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Abstract 

All Magnetic Resonance Imaging (MRI) techniques are based on the Bloch 

NMR flow equations. Over the years, researchers have explored the Bloch NMR 

equations to significantly improve healthcare for accurate diagnosis, prognosis 

and treatment of deceases. However, MRI scan is still one of the most expensive 

anywhere. Method to achieve the best image quality with the lowest cost is still 

a big challenge. In this chapter, the generalized time dependent non 

homogenous second order differential equation derived from the Bloch NMR 

flow equations is modeled into basic and well known equations such as Bessel 
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equation, Diffusion equation, Wave equation, Schrödinger’s equation, 

Legendre’s equation, Euler’s equation and Boubaker polynomials. Solutions to 

these equations are abundantly available in standard text books and several 

research studies on Mathematics, Physics, Chemistry and Engineering. 

Unexpected NMR/MRI methodological developments may be possible based on 

the analytical solutions of these equations and may further enhance the power 

of NMR. There will be spectacular applications in a variety of fields, ranging 

from cognitive neuroscience, biomedical engineering, imaging-science, 

molecular imaging to medicine, and providing unprecedented insights into 

chemical, biological and geophysical processes. This may initiate unforeseen 

technological and biomedical possibilities based on a much improved 

understanding of nature. 

Keywords 

Bloch NMR Flow Equation, Bessel Equation, Diffusion Equation,  

Wave Equation, Schrödinger’s Equation, Legendre’s Equation,  

Euler’s Equation and Boubaker Polynomials. 

2.1  Introduction 

Advances in computers, mathematics, and science, is giving way to 

nonsurgical tools in the diagnosis of certain diseases. Besides X-ray imaging, 

now over 100 years old, the technologies include computed tomography (CT 

scans), positron-emission tomography (PET scans), ultrasound imaging, or 

sonography and magnetic resonance imaging (MRI).  

Magnetic Resonance Imaging [1-34] uses a powerful magnetic field along 

with radio waves (not X-rays) and a computer to produce highly detailed “slice-

by-slice” pictures of virtually all internal structures of the body. The results 
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enable physicians to examine parts of the body in minute detail and identify 

disease in ways that are not possible with other techniques. For example, MRI is 

one of the few imaging tools that can see through bone, making it an excellent 

tool for examining the brain and other soft tissue. 

Patients must remain still during the imaging process. And because the scan 

takes place as the patient slides through a rather small tunnel in the machine, 

some people experience claustrophobia. In recent times, though, open MRI 

scanners have been developed for patients who are anxious or obese. Naturally, 

no metal objects such as pens, watches, jewelry, hairpins, and metal zippers as 

well as credit cards and other magnetically sensitive items are allowed into the 

examination room. 

If a contrast fluid is used, there is a slight risk of allergic reaction, but the risk 

is less than that associated with the iodine-based substances commonly used 

with X-rays and CT scans. Otherwise, MRI poses no known risk to the patient. 

However, because of the effect of the strong magnetic field, patients with 

certain surgical implants or metal fragments from injuries may be unable to 

have an MRI. So if an MRI is recommended, be sure to tell your doctor and 

your MRI technologist if you have any of these things. MRI does not use 

potentially harmful radiation, and it is particularly good at detecting tissue 

abnormalities, especially those that may be obscured by bone. 

At present, the main thrust of research seems to be to improve technology 

that is already available. For example, researchers are developing MRI scanners 

that operate with a much weaker magnetic field than that of present devices, 

thus considerably reducing costs. A new technology under development is 

called molecular imaging (MI). Designed to detect changes within the body at 

the molecular level, MI promises very early detection and treatment of disease. 

MRI technology has reduced the need for many painful, risky, and even 
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unneeded exploratory operations. And when imaging leads to early diagnosis 

and treatment of disease, the outcome may be much better. The equipment, 

however, is expensive—some machines costing well over a million dollars. 

Despite over 50 years of the use of MRI for various investigations, the choice 

of technique parameters still relies to a great extent on experience. Research 

efforts to optimize the choice of parameter settings which yield sufficient image 

quality at the lowest possible cost are still rare. True optimization requires 1) 

estimation of the image quality needed to make a correct diagnosis and 2) 

methods to investigate all possible means of achieving this image quality in 

order to be able to decide which of them gives the lowest cost. Since the Bloch 

NMR equations are fundamental to all NMR/MRI computations, simulations 

and experiments, it can be fruitful, rewarding and beneficial with exciting 

results if these problems could be approached purely mathematically by solving 

the fundamental Bloch NMR equations analytically using all known 

mathematical techniques available both classical and quantum formulations. As 

such it presents significant challenge for the mathematical scientists, physicists, 

engineers and computer scientists to apply any of the fundamental and well 

known equations derived from the Bloch NMR flow equation as presented in 

this chapter to reveal most of the current unknowns but can enhance present 

understandings in the field of NMR/MRI.  

Many of human diseases such as cancer, diabetes, arteriosclerosis and stroke, 

Alzheimer’s disease, AIDS, etc, have all been known to be diseased conditions 

which take place at quantum (molecular) level. If we can see exactly what goes 

on at that level, we may have thorough understanding of their specific causes 

(or how they are caused), trace and monitor their progression and get the best 

cure for them. It is hoped that due to the ability of magnetic resonance to probe 

right to the fundamental level, we may be able to image human cellular 
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functions and such imaging modalities would definitely help in the 

understanding of the human diseased conditions. Information gathered from the 

images can then be added to the present medical database to make it more 

comprehensive and thus permit the physician to make a more specific diagnosis, 

prognosis and possibly the appropriate therapy. The basic challenge in this 

direction is finding the right mathematical frameworks which appropriately 

describe the processes involved. 

2.2  The Bloch NMR Equations 

Magnetic resonance is a physical phenomenon whereby nuclei containing an 

odd number of particles, when in the presence of a magnetic field, absorb radio 

frequency waves at specific (resonance) frequencies. The magnitude of the 

radio frequency (RF) waves provides information about the molecules 

containing the nuclei. The nuclei have an intrinsic spin property, which 

generates a local magnetic field. The nuclei are also precessing around their 

axes with a velocity that is proportional to the strength of the external field (the 

Larmor equation). The nuclei are therefore often called spins. Magnetic 

resonance imaging (MRI) is a non-invasive technique used to obtain 

tomographic images of any desired plane of the body and by means of magnetic 

resonance velocity mapping; it is possible to quantify blood flow. In MRI, the 

spins or magnetic moments are exposed to a strong external magnetic field 

which will force the spins to line up in alignment with the field. In this state, the 

spins are at the lowest energy state and posses longitudinal magnetic properties. 

The magnetization at this point is the equilibrium magnetization M 0 . Applying 

a radio frequency (RF) signal in a direction perpendicular to the spins at their 

resonance (Larmor) frequency causes the spin to absorb energy and hence tips 

the net magnetization vector of all the spins toward the transverse plane. This 
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creates a net transverse magnetization vector. This vector will also precess 

about the external field and begin to relax towards alignment with the external 

field again (the lowest energy states). That is, the net magnetization moves back 

to align with the external field and hence we say that motion has occurred. This 

motion of the net magnetization is guided by a set of equations known as the 

Bloch equations which are the equations of motion for the net magnetization 

vector M of a sample of spins placed in a main magnetic field B0 (where the 

components of M are Mx, My and Mz). 

The behaviour of the transverse magnetization vector can be detected by the 

receiving unit in the scanner, the rf coil, and produce an rf signal. This rf signal 

is a fine wave at the Larmor frequency. The rate at which the net longitudinal 

magnetization vector builds up again to the equilibrium values is constant and is 

expressed by the T1 relaxation time. The rate at which the transverse 

magnetization vector decreases is also constant and expressed by the T2 

relaxation time. T1 and T2 are the major parameters influencing the amplitude of 

the magnetic resonance signal. They depend on the molecular environment of 

the tissue and allow the distinction of different types of tissues. 

The magnetic vector µ of a spinning, charged particle lies along the axis of 

rotation. The surrounding magnetic field symbolized by the vector H, exerts a 

torque that tends to bring µ and H into alignment. However, this torque also 

interacts with the angular momentum vector; the effect of this interaction is to 

cause the spin axis to describe a cone about the direction of the magnetic field. 

This phenomenon is called the Larmor precession, named after Sir Joseph 

Larmor, the Irish Physicist, who was the first to calculate the rate at which 

energy is radiated by an accelerated electron and the first to explain the splitting 

of spectrum lines by a magnetic field. 
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When the natural frequency of the precessing nuclear magnets corresponds to 

the frequency of a weak external radio wave striking the material, energy is 

absorbed from the radio wave. This selective absorption, called resonance, may 

be produced either by tuning the natural frequency of the nuclear magnets to 

that of a weak radio wave of fixed frequency or by tuning the frequency of the 

weak radio wave to that of nuclear magnets determined by the strong constant 

external magnetic field. This motion of the magnetization vector of uncoupled 

spins is easily expressed in terms of the Bloch NMR equations. 

Almost all MRI concepts, dynamics and experiments are governed by the 

Bloch NMR equations. These equations relate the macroscopic model of 

magnetization to the applied radiofrequency, gradient and static magnetic fields. 

The dynamics of the changes in bodies containing NMR - sensitive nuclei, its 

physical changes (for example, freely diffusing or bound within a cavity) are 

carefully captured by the Bloch equation: a phenomenological equation 

describing the physics of magnetic moments – such as the moment of the water 

proton as a precessional gyroscopic motion in the presence of exponential 

damping (T1 and T2), perturbing magnetic fields (the fixed Bo, and the time -

varying radiofrequency B1). 

The Bloch NMR equations are a set of coupled differential equations 

describing the behaviour of the macroscopic magnetization vector under any 

conditions. A form of the equations [35-41] is given as: 
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The parameters are defined in the macroscopic frame of reference 
yx MM ,

(Transverse magnetization) and    (longitudinal magnetization) are 

magnetizations along     and   directions,    is the equilibrium magnetization 

(along the z direction),       is the Radiofrequency (RF) magnetic field which 

can be constant, depending on x and/or t.    is the longitudinal or spin-lattice 

relaxation time,    is the transverse or spin-spin relaxation time and   is the 

gyro magnetic ratio of fluid spins.  

The total magnetic field is given as:  

  xBBB o 1


  (2.4) 

where oB  is the static magnetic field. All these parameters, as may be related 

to MRI will be discussed in full detail in section. 

Since the MRI spin are always in motion, they must be treated with reference 

to their dynamics. The features of this dynamics are very much pronounced in 

fluids especially in biological systems. 

From the kinematic theory of moving fluids, given a property M of the fluid, 

then the rate at which this property changes with respect to a point moving 

along with the fluid will be the total derivative: 
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where
dt

dx ,
dt

dy ,
dt

dz , are the components of the fluid velocityv


. The change in the 

parameter, dM, occurring during the time dt, at the position of a moving fluid 

particle which moves from x, y, z to x+dx, y+dy, z+dz during this time, will be: 

( , , , ) ( , , , )dM M x dx y dy z dz t dt M x y z t       

M M M M
dM dt dx dy dz

t x y z

   
   
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equation (2.5) is obtained if 0dt . We can also write this equation in the form: 
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where the second expression is shorthand for the first, in accordance with the 

conventions for using the symbol  . The total derivative 
  

  
 is also a function of 

x, y, z, and t. A similar relation holds between partial and total derivative of any 

quantity, and we may write, symbolically,  

d
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where v is the fluid velocity and 
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The Bloch equations become: 
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Considering fluid flow along horizontal x – direction, partial derivatives 

along the y and z directions are ignored. Therefore: 
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Equations (2.8 - 2.10) then become: 
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2.3  The General Bloch NMR Flow Equation  

The Bloch NMR flow equations can be written as: 
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From equation (2.16), we have:  
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Substituting for Mz in equation (2.15) gives: 
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For general pulsed NMR/MRI experiment B1(x) in equation (2.18a) will be 

replaced by B1(x,t). This is valid even ia a rotating frame. Equation (2.18a) can 

then be written in a more general form as [38]: 
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 (2.18b) 

Equation (2.18b) is a general second order differential equation which can be 

applied to any fluid flow problem. At any given time t, we can obtain 

information about the system, provided that appropriate boundary conditions 

are applied. From equation (2.18b), we can obtain the diffusion equation, the 

wave equation, telephone and telegraph equations e.t.c, and solve them in terms 

of NMR parameters by the application of appropriate initial or boundary 

conditions. Hence, we could get very important information about the dynamics 

of the system. It should be noted however that the term  o 1F B x, t  is the forcing 

function  o o 1F M T . If the function is zero, we have a freely vibrating system; 

else, the system is undergoing a forced vibration.  

2.4  The Time - Independent Bloch NMR Flow Equation 

For a steady flow, all partial derivatives with respect to time can be set to 

zero (time independent). Hence equations (2.11-2.13) become: 
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From equation (2.21) we write:  
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collecting the like term in equation (2.22) gives: 
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From equation (2.20, 2.21 and 2.23) we have, 

 
 y y 1 o2 2

y 1
1 2 1 1

dM M B x Md 1 d 1
v v v M B x

dx dx T T dx T T

   
        

   
   (2.24) 

 
 

2
y y 1 o2 2 2

1 y2
1 2 1 2 1

d M dM B x M1 1 1
v v B x M

T T dx T T Tdx

   
        

   
 

    
2

y y2 2 2 o
o g 1 y 12

1

d M dM M
v vT T B (x) M B x

dx Tdx
       (2.25) 

Equation (2.25) is a time independent Bloch NMR flow equation [39-46].  
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2.5  The Time - Dependent Bloch NMR Flow Equation 

For a flow that is independent of the space coordinate, x, that is, the 

magnetization does not change appreciably over a large x for a very long time, 

then all partial derivatives with respect to x could be set to zero (time dependent) 

[38]. From equation (2.3) we write:  

 

  oz z
y 1

1 1

MdM M
M B t

dt T T
     (2.26) 

 

  o
z y 1

1 1

Md 1
M M B t

dt T T

 
    

 
 (2.27) 

Substituting for zM  in equation (2.27) into equation (2.26) gives: 
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Equations (2.18b, 2.25, 2.28) are fundamental equations that can 

appropriately guide the generation of MRI signal of any kind in any coordinate. 

This is possible because these equations can easily be transformed to known 

equations commonly used in Mathematics, Physics and Engineering to solve 

real life problems. Some of the equations will be derived in the next sections. 

2.6  Diffusion MRI Equation 

Starting from equation (2.18b), we can assume a solution of the form: 
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subject to the following theoretical conditions (the limiting case of non 

adiabatic small rf limit): 

 
21

2

1

2 1
),(

TT
txB   (2.30) 

where µ and    are dependent on the NMR parameters and    is independent of 

x and t. 

Taking       and      . 

Equation (2.18b) becomes: 

 

 txBF
t

M
T

x

M
v o

y

o

y
,12

2

2 








 (2.31) 

If we write  

 oT

v
D

2

  (2.32) 

Then equation (2.31) becomes: 

 

 txBF
x

M
D

t

M
o

yy
,12

2










 (2.33) 

This can be written in generalized co-ordinate as [47-55]: 

  txBFMD
t

M
oy

y
,1

2 



 (2.34) 

If D represents the diffusion coefficient, then Equation (2.34) is the equation 

of diffusion of magnetization as the nuclear spins move. The function 
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 txBFo ,1  is the forcing function, which shows that the application of the rf B1 

field has an influence on the diffusion of magnetization within a voxel. It is 

interesting to note that the dimension of Equation (2.33) exactly matches that of 

diffusion coefficient. 

Equation (2.34) is only applicable when D in non – directional. That is, we 

have a constant diffusion coefficient (isotropic medium). In a later section 

equation (2.34) will be considered for restricted diffusion in various geometries. 

This model would work quite well for molecules that move very short 

distances over a very considerable amount of time. 

where 

o
o

1

M
F

T
 ; 

g
1 2

1
T

T T
  and 

0
1 2

1 1
T

T T
 

 

 is the gyromagnetic ratio, D is the  diffusion coefficient, v is the fluid velocity, 

T1 is the spin lattice relaxation time, T2 is the spin relaxation time, Mo is the 

equilibrium magnetization, B1(x, t) is the applied magnetic field and My is the 

transverse magnetization. Solutions to equation (2.1) have been discussed by a 

number of analytical methods [12, 21], and for the present purpose it is 

sufficient to design the NMR system in such a way that the transverse 

magnetization My, takes the form of a plane wave, 

2.7  Wave MRI Equation 

Based on equations (2.29), we can write equation (2.18b) in the form wave 

equation: 

  txBF
t

M

x

M
v o

yy
,12

2

2

2

2 








 (2.35) 
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Equation (2.35) only holds when: 

 oo T
TT

T   2,
1

21

 (2.36) 

In three dimensions equation (2.35) becomes: 

  trBF
t

M
Mv o

y

y ,12

2

22 



  (2.37) 

In the spherical polar geometries, we can write equation (2.37) as: 

  trBF
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


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







 (2.38) 

When the rf B1 field is at its peak, it is expected that the angle between the 

initial position and the resulting one is π. If the transverse magnetization is 

radially symmetric, we can write:  

  trBF
t

M

r

M

rr

M
v o

yyy
,

1
12

2

2

2

2 



























 (2.39) 

2.8  The Bessel Equation  

We study the flow properties of the modified time independent Bloch NMR 

flow equations which describes the dynamics of the hydrogen atom under the 

influence of rf magnetic field as follows [1-10]: 

 
1

10

02

2

2 )(
)(

T

xBM
MxS

dx

dM
vT

dx

Md
v y

yy 
  (2.40) 

where 
2 2

1 g g
1 2

1
S(x) B (x) T , T

T T
    , 0

1 2

1 1
T

T T
  . 
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In equation (2.25), the spin velocity  is constant and distance x can be 

defined as: 

 


x
xTv o   and 



1
oT  (2.41) 

where oT  is the T1 an T2 relaxation rates of the spins which may be changing 

from pixel to pixel  within the distance x. If the MRI signal is sampled when the 

applied radiofrequency energy successfully displaces most of the spin unto the 

transverse plane (M0 ≈ 0), equation (2.40) then becomes: 

   0( 2222

2

2

2  y

y

o

y
Mxk

dx

dM
xT

dx

Md
x   (2.42) 

where  

 GxxB  )(1  (2.43a) 

ok GT   

and 

 
21

2
2

TT

To  (2.43b) 

Equation (2.42) is an equation transformable to Bessel function. When there 

is no gradient G, all the spins are rotating at the same frequency and therefore, 

in the rotating frame of reference at rotating at o, the spins appears stationary 

with no phase difference. In the presence of gradient G, the spins start presecing 

with slightly difference frequencies winding them into a helix and hence a phase 

difference is induced. As the gradient strength and/or duration , increases, the 

pith of a helix become becomes smaller resulting in a smaller wavelength and 

correspondingly a higher k value. 
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The equation for the total MRI signal from a slice in the x, y, pane is:  

     dxdyeyxfkkS
ykxki

yx
yx





)(

,,  (2.44a) 

where 

 oyy TGk   (2.44b) 

 oxx TGk   (2.44c) 

Equation (2.44) is the fundamental equation for MRI. It gives detail 

information on MRI signal within a voxel. f(x, y) is the distribution of the MRI 

signal over the slice d, at the time just after the excitation. Equations (2.44b, 

2.44c) are the k- values along the phase and frequency encoding axes 

respectively. The Fourier transform of equation (2.44) is: 

     yx

ykxki

yx kdkekkSyxf yx





)(

,,  (2.45) 

2.9  The NMR Schrodinger Wave Equation 

NMR is a quantum phenomenon and like all other quantum phenomena is 

best described by quantum mechanics. It will be enormously valuable if 

quantum mechanics as a tool for understanding the NMR microscopic nature is 

developed in parallel with the growth of NMR Physics. It is our goal to develop 

the Bloch NMR flow equations in terms of quantum mechanical wave functions 

which can predict analytically and precisely the probability of events or 

outcome. 

In equation (2.25) It is convenient to use as dependent variable the departure 

of the stream function from its classical form and write:  
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x

y exM  )(  (2.46) 

where   
  

    
,   is the instantaneous velocity of the fluid and (x) is a special 

function of the transverse magnetization My, which depends on the dynamical 

state of the fluid particle. When My is maximum and Mo is minimum (say Mo = 0). 

For a maximum value of My (when Mo= 0) we can write equation (2.40) as: 

 0
2

2
1

2

2

2

 


v

B

dx

d
 (2.47a) 

subject to the following  conditions: 

(i)                                                    0xe                                                  (2.47b) 

(ii) Resonance condition exists at Larmor frequency  

o
f  =   B -  = 0   

(iii)  Rg TTxB )(2

1

2  

where 
g R 2

1 2 o 1 2o

1 1 1 1 1
T , T and

T T T T T4T
   

.

 

 denotes the gyromagnetic ratio of fluid spins; /2 is the rf excitation 

frequency; fo/ is the off- resonance field in the rotating frame of reference. T1 

and T2 are the spin-lattice and spin-spin relaxation times respectively, the 

reciprocals of T1 and T2 are defined as relaxation rates. rf B1 is treated as 

constant and of  the order of 1G. The exponential function in equation (2.47b) 

can be defined as follows, 

 )(
!

)(
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xF
n

x
e

n

n
x 






 (2.48) 
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Equation (2.48) is extremely useful in obtaining approximations to 

complicated formulas, valid when x is small. In particular, when: 

 ovTx 4  (2.49) 

Equation (2.47c) becomes: 

1)( xF  

Equation (2.27a) becomes the Schrödinger wave equation in 1-D given by 

[40]: 

 0))((
2

22

2

 
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xEE
dx

d
p


 (2.50) 

where 

 )]([
2)(

22

2
1

2

xEE
v

xB
p




 (2.51) 

E and Ep(x) are the total energy and potential energy of the fluid particle 

respectively. Equation (2.48) can easily be solved if    is constant, with a 

solution of the form      . But if    varies with x, one may find solution in the 

form: 

    iw x
x e   (2.52) 

To simplify this problem,  

 Let    
2

1

2

2









 vExk



 (2.53) 



 

Theory, Dynamics and Applications of Magnetic Resonance Imaging-I 
 

62  http://www.sciencepublishinggroup.com 

Substituting equation (2.52) into (2.51) gives equation for the x-dependent 

phase. 

Hence, w(x) satisfies: 

    0
2

2

2

2









 xk

dx

dw

dx

wd
i  (2.54) 

Note that equations (2.54) and (2.51) are equivalent. 

For a free particle, 
   

   
  . Hence we can neglect the second derivative term 

   

   
 in equation (2.54) and this will lead to our first approximation   in  . 
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  

 (2.55) 

Equation (2.55) is the approximation to the wave function. 

Setting up a successive approximation; from equation (2.54), we can write: 

   2
2

22

xk
dx

wd
i

dx

dw









 (2.56) 

By substituting the n
th
 approximation on the R.H.S, we obtain the (n+1)

th
 

approximation by quadrature. 

      1

''2

1    n

x

nn Cdxxiwxkw  (2.57) 
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Thus, for n=0, we obtain: 

 

   
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 (2.58) 

It is expected that w1 be close to w0, for this approximation to approximate 

the wave function. 

Hence 

     |||| 2' xkxk   (2.59) 

If condition (2.59) holds, one may expand the integrand in equation (58) and 

obtain: 
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

 (2.60) 

The constant of integration only affects the normalization of     . It can be 

neglected until the desired approximation is made. 

Hence the approximation in equation (2.54-2.60), called WKB approximation, 

leads to the approximate wave function. 

  
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Taking      as the effective wave number, we can define our wavelength as 

     
  

    
. 

Therefore condition (2.59) can be re-written as:  

    xp
dx

dp
x   (2.62) 

Consider a turning point and assuming that except in its immediate 

neighbourhood, WKB approximation is applicable. Changing the dependent and 

independent variables, we write: 

      xxkxu   (2.63) 

And 

  
x

y k x dx 
 (2.64) 

By manipulating, we obtain: 
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2 2 2

d u 1 dk 1 d k
1 u 0
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 (2.65) 

Substituting the particular value of k(x) given by equation (2.63), the integral 

of equation (2.64) can be evaluated, and choosing the lower limit of the 

integration as 0, we obtained, 

22 2 2
0 00

2 2
0 0

4 Ex 4 Ex ze2 4 Ex ze x ze
y E In

4 4E ze

              
      

   (2.66) 
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where y  is the measure of the distance from the classical turning point. Hence 

y  is small near the turning point assuming the two limits of integration are 

close to each other. At points very far to the left or right from the turning point, 

WKB is applicable. 

Expressing y  in terms of k, and finding its derivative, equation (2.65) 

becomes: 

 

2

2 2

d u 5
1 u 0

dy 36y

 
    
 

 (2.67) 

Let us attempt the solution of equation (2.67) in the form: 

     dttfeyyu yt  


 (2.68) 

Substituting (2.68) into (2.67) gives, 

    2 2 2 yt5
1 2 yt y t y e f t dt 0

36

 
          
   (2.69) 

Choosing   such that the terms which are constant in y  vanish, it is 

required that: 

   0
36

5
1   (2.70a) 
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5
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6

1
  (2.70b) 

The remaining expression in equation (2.69) is: 

 

   2 ytd
f t 2 t 1 t e dt 0

dt

 
     

   (2.71) 

Integrating by part, 
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    2 ytd
f t 2 t 1 t e dt 0

dt

 
     

   (2.72) 

          2 yt 2 ytd d
2 tf t 1 t f t e dt 1 t f t e 0

dt dt

                 (2.73) 

To successfully construct a solution of the proposed form in equation (2.68), 

the integrand in the first integral should be made to vanish and the path of 

integration is chosen so that the second integral disappears. 

We therefore require: 

     2d
2 tf t 1 t f t
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   
 
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Using equation (2.70), we can write the general form of (2.67) as:  

 
 

0
1

1
22

2








 
 u

ydy

ud 
 (2.74) 

It should be noted that if u  is a solution, 1u  is also a solution of equation 

(2.74).  

In deriving the WKB connection formulas,  
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and  
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Recall that  is not an integer, this implies that it   are branch points of the 

function          . 

The asymptotic expansion of   
  and   

  are needed in the WKB expansion 

for large imaginary values of y. Hence, we substitute in   
 : 

 
y

z
it   (2.77) 

and obtain: 
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For    large enough, a reasonable approximation to the asymptotic expansion 

of u  is obtained by expanding the parenthesis in powers of 
 

 
, then integrate 

term by term, 
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Since    
 

 
  is negative imaginary, the form of this solution is in agreement 

with the WKB approximation in the region of negative kinetic energy. 

When the variable   is negative real, a different integration path is taken; we 

will choose a different limit of integration. 
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and  
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     
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

2
cos2


 

 yeiyu i
. (2.81) 

This solution also agrees with the WKB approximation in the region of 

positive kinetic energy. Unless   is half-integral,       and         are two 

linearly independent solution. 

From equations (2.75), (2.76) and (2.80), we can define: 

      yuyuyu     (2.82) 

and 
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   111  (2.83) 

Near the turning point 0y , the integral in equation (2.80) gives: 
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 (2.84) 

This proves that the wave function in equations (2.46, 2.47, 2.50): 

 
6

1

y

u

k

u


 (2.85) 

Perfectly behave well near the turning point. 

2.10  Time - Dependent NMR Schrodinger Equaion 

At the molecular level the diffusion coefficient of a fluid particle is defined as:  
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im

D
2


  (2.86) 

Substituting equation (2.86) into equation (2.33) gives the time-dependent 

NMR Schrodinger equation: 
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 (2.87) 

We can represent the transverse magnetization My as the propagation of a 

plane harmonic wave in the x-direction in the form of equation (2.29) and write: 

 
)(),( tkxi

y AetxM   (2.88) 

where A is a constant, µ = ik and  = -i. Equation (2.88) represents a typical 

propagating matter wave where k, measures the wave vector and , the angular 

frequency of the wave. Splitting the transverse magnetization into its space and 

time parts in the form, 

 )()(),( tTxXtxM y   (2.89) 

we can write 

 ikxeAxX 1)(   (2.90) 

 tieAtT  2)(  (2.91) 

A wave in the x-t space propagates by joint oscillations represented by 

equations (2.90-2.91) each of them is capable of exciting the other. By 

differentiating equation (2.90) twice and making use of: 
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 )(
2

22

xE
m

k
E p


 (2.92) 

we arrive at the Schrodinger’s time-independent wave equation, expressed as in 

equation (2.50): 

 )()]([
)(

2 2

22

xXxEE
dx

xXd

m
p


 (2.93) 

where E and Ep(x) denote the total and potential energies of the particle 

respectively. Similarly, differentiating equation (2.91) once with respect to t and 

making use of the relation: 

E  

we arrive at, 

 )(
)(

tET
dt

tdT
i    (2.94) 

On combining equations (2.93) and (2.94) one arrives at the Schrodinger’s 

time-dependent equation. 

 ),(),(ˆ txM
t

itxMH yy



   (2.95) 

where the Ĥ  operator stand for: 

 )(
2

ˆ
2

22

xE
xm

H p






 (2.96) 

Equation (2.96) is well-known as the Hamiltonian of the particle. It should be 

mentioned that equation (2.95) is the true equation representing the motion of 

microscopic particles through a given space. This is applicable even during a 

quantum measurement. As long as matter exhibits wave-particle dualism, 
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equations (2.93) and (2.94) are both valid and their solutions are readily 

obtainable by solving them. The most general wave function may then be 

obtained by forming a suitable product of X(x) and T(t).  

2.11  NMR Legendre Equation and Boubaker Polynomial 

When My is maximum and Mo is minimum (say Mo = 0), we can write 

equation (2.25) as: 

 
 

0
2

0
2

2

 y
yy

M
v

xS

dx

dM

v

T

dx

Md
 (2.97) 

Where 0
1 2

1 1
T

T T
  ,    2 2

1
1 2

1
S x B x

T T
   . 

If we then write that: 

 
l

x

lv

T
cot

10   (2.98) 

 
 

 1
1

22
 nn

lv

xS
 (2.99) 

The small rf limiting condition:  

 2 2
1

1 2

1
B x

T T
   

gives 

 

 1

11

2
21

2

22
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




nn
vTT

l

l

nn

vTT
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where l is a parameter in length or any other unit of distance. It is worthy of 

note that equation (2.97) is obtainable from the expression: 

 
 

 xB
T

M
M

v

xS

dx

dM

v

T

dx

Md
y

yy
1

1

0

2

0

2

2

  (2.100) 

Under two conditions 

1. When the rf       field applied, has a maximum value, so that    is 

maximum; and     
.
 

2. When the rf       field is just removed (so that         ). 

However, condition 1 seems to favour most part of this particular write-up. 

Equation (2.97) can then be written as:  

 

 

  01
1

sin

cos
1

01
1
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1

22

2
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2
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Mnn
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l

x
l

x

ldx

Md

Mnn
ldx

dM

l

x

ldx

Md

 (2.101) 

Multiplying equation (2.101) all through by    
 

 
, it follows that: 

   01sin
1

cos
1

sin
22

2

 y

yy
Mnn

l

x

ldx

dM

l

x

ldx

Md

l

x
  (2.102) 

It would be noted that: 

 











dx

dM

l

x

dx

d

dx

dM

l

x

ldx

Md

l

x yyy
sincos

1
sin

2

2

 (2.103) 

Hence, equation (2.101) becomes: 
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   01sin
1
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






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




y

y
Mnn

l
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dM

l
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d
 (2.104) 

If we define: 

 
l

x
cos  (2.105) 

and 


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 d
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but 

 11cossin 222  
l
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l

x
 (2.106) 

Therefore, equation (2.106) becomes: 
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, it follows that:  
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 (2.107) 
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Now, since l is a constant, equation (2.107) can be written as:  

     01sin
1

sin
1

1
22

2 

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
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d


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 (2.108) 

Dividing all through by 
 

  
   

 

 
, it follows that: 

     011 2 
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     0121
2
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2  y

yy
Mnn

d

dM

d

Md





  (2.110) 

This is the Legendre differential equation and has a solution of the form: 

     nny QCPCM 21   (2.111) 

where       are the Legendre polynomials of the first kind (which are regular at 

finite points) while       are the Legendre Polynomials [56-57] of the second 

kind (which are singular at ±1).    and    are constants. 

It is worthy of note that       and       are two linearly independent 

solutions to the equation (2.110). We can write that:  
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whichever m is an integer. We have noted earlier that this expression implies  
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This solution can be written as:  
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 (2.113) 

However, for the purpose of the Boubaker Polynomial problem [44, 59], we 

shall write that: 

 
 

 

 

    
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n n 1 n n 1 n 1 n 2 n 3
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1! 2 2n 1 2! 2 2n 1 2n 2 2n 3
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 

      
      

         

(The expression of equation (2.113) is based on some sort of definition which 

is a choice made in order that        ). 
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 (2.114) 

For  
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n

n n
  (2.115a) 

Then, 1,0n . 

This condition will cause all other co-efficient of   to be equal to zero, so that: 

   n

ynM    (for 1,0n ) (2.115b) 

However in addition to condition (2.115a), if we can establish that: 
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It follows that: 
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is given by 

 
   

  2 1 1

2 14
2

2 1

4
1

!

n
n

p
p n p

p j p

n p
n j

p


  




  

  
  

  
   

we obtain: 
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 (2.117) 

If the assumption would hold for the Legendre polynomials of the second 

kind, the procedure can be extended to the transverse magnetization in the form: 

     nyn QM   (2.118) 

2.12  Sturm - Liouville Problem 

The Legendre polynomials have the orthogonality property expressed as 

follows: 
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 (2.119) 

The reason for this orthogonality property is that Legendre differential 

equation can be viewed as a Sturm-Liouville problem: 
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where   yy x M  and  n n 1   . 
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We shall make an assumption of the form: 
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( l  is a parameter to be determined). Hence, the time-independent equation:  
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It follows that: 
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Since 
2l is not dependent on  , we have: 
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This is not exactly the same as equation (2.120), but equation (2.124) can be 

compared to the form that we stated earlier, that is, 
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However, earlier on, equation (2.109) is given as: 
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 (2.125) 

Hence, for   -dependence, we can establish Sturm-Liouvile problem in the 

form of equation (2.125). 
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2.13  The Diffusion - Advection Equation 

The diffusion - advection equation is a differential equation describing the 

process of diffusion and advection. For the investigation of the diffusion 

process of magnetization in a fluid moving at a uniform velocity which is 

constant in time, we have to take the process of advection into consideration. 

The equation which describes such a process is known as the Advection 

equation. The advection equation is the partial differential equation that governs 

the motion of a conserved scalar as it is advected by a known velocity field. It is 

derived using the scalar's conservation law, together with Gauss's theorem, and 

taking the infinitesimal limit. 

The diffusion - advection equation (a differential equation describing the 

process of diffusion and advection) is obtained by adding the advection operator 

to the main diffusion equation. In the Cartesian coordinates, the advection 

operator [58] is: 
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where the velocity vector v has components   ,    and    in the x, y and z 

directions respectively. 

Therefore, from Equation (2.18b),  

  

 

2 2
y y y y2

o o2

2
y 2 2

g 1 y2

o 1

M M M M
v 2v vT T

x t x tx

M
T B x, t M

t

F B x, t

   
  

   


   



 

 

we can write:  
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    0,2
2

1

2

2

2

2










yg

yy
MtxBT

tx

M
v

t

M
  (2.126) 

It then follows that: 

  txBF
t

M
T

x

M
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x

M
v o
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o

y

o

y
,12

2

2 













 (2.127) 

  txBF
x

M
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t

M
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M
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o ,12

2

2 













 (2.128) 

If we multiply Equation (2.128) all through by 
 

  
, it follows therefore that: 

  txB
T

F

x

M

T

v

t

M

x

M
v

o

oy

o

yy
,12

22















 (2.129) 

where 

 
oT

v
D

2

  (2.130) 

hence, 

  txB
T

F

x

M
D

t

M

x

M
v

o

oyyy
,12

2















 (2.131) 

Provided that D is the diffusion coefficient, and since v is the fluid velocity, 

equation (2.131) is the diffusion – advection equation for the NMR transverse 

magnetization. It is very interesting to note that equation (2.131) exactly match 

the advection equation without any special transformation whatsoever. 

2.14  The Euler NMR Equation 

Based on equations (2.18b) and (2.29), we can define for constant fluid 

velocity v, and     
  field: 
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2
1

2; BTvTT ogo   (2.132) 

or 

 goo TTvBT  ;2
1

2
 (2.133) 

When the maximum NMR signal is received at maximum rf B1 field and Mo 

= 0, equation (2.18b) becomes: 

 02
2

22

2

2

2 














t

M

tx

M
v

x

M
v

yyy  (2.134) 

This equation can also be derived for the following rf limits. 

For     
    , equation (2.18b) becomes: 

 02
2

22

2

2

2 














t

M

tx

M
v

x

M
v

yyy  (2.135) 

provided that: 

 goo TTvT    (2.136) 

  v  (2.137) 

 go TT 2  (2.138) 

Equation (2.135) is called the Euler’s equation. 
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2.15  Analytical Solutions to the Generalized Bloch NMR 

Flow Equation 

It may be very important to solve equation (2.18b) analytically for various 

applications as highlighted in the editorial introduction. 

Equation (2.18b) can be written as: 

 
 

2 2 2
y y y y2

o2 2

y 2 2
o 1 g y

o 1

M M M M
v 2v T v

xx x t t

M
T B (x, t) T M

t

F B (x, t)

   
  

   


  



 

 (2.139) 

where  

21

0

11

TT
T  , 

21

1

TT
Tg  , 

1

0

0
T

M
F   

Because of the difficulty involved in solving a differential equation which 

does not have its coefficient to be constant, we shall consider the case where: 

),(2

1

2 txBTg   

Equation (2.139) becomes:  

 

2 2 2
y y y y y2

0 0 g y2 2

0 1

M M M M M
v 2v T v T T M

x t x tx t

F B (x, t)

    
    

    

 

 (2.140) 

Assuming a solution of the form: 

  










1 1

cos)(sin)(),(

n n

nny
xn

tU
xn

tUtxM







 (2.141) 
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(  is a term which has the same dimension as x). It then follows that: 

y

n n

n 1 n 1

2 22
y

n n

n 1 n 1

2
y n n

n 1 n 1

y n

M n n x n n x
U (t)cos U (t)sin
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cos sin

x t dt dt

M dU n
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t dt

 
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       

       
    
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

 

  
 
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 

 

 

Equation (2.140) then becomes: 

 

2 2
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 (2.142) 
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 (2.144) 

Multiplying equation: (2.144) all through by cos
p x


, it follows that:  
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  (2.145) 

Integrating both sides from 0 to   with respect to x, we have:  
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 (2.146) 

However, for the integral on the LHS of equation (2.146) to be valid, p = n, 

so that: 
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but  
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Equation (2.148) becomes: 
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  (2.149) 

We can write: 
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The homogeneous equation of equation (2.150) is given as: 
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Assuming a solution of the form: 
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Equation (2.151) becomes: 
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2

2
2,222 

   

   or    

Therefore, 

 

   t t
n 1 2

t t t t
1 2

t t t
1 2

t
n n n

U (t) A e A e

A e e A e e

e A e A e

U (t) (a cosh t bsinh t)e

 

   

  



 

 

  
 

   

 (2.152) 

where 
21 AAa  , 

21 AAb  , tte t  sinhcosh , tte t  sinhcosh . 
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It is worthy of note that the form of our solution is as a result of the fact that: 

  .042 22
   

Equation (2.152) is the complementary function of equation (2.150). 

We shall find the integral solution to the equation (2.150): 

 












0

1
02

2

cos),(
2

2
2

dx
xn

txB
F

U
dt

dU

dt

Ud
n

nn  (2.153) 

If we take the Radio frequency field to be a sinusoidal wave travelling 

towards the right (in the positive x-direction), then we can either have:  

Case (i) 

  







 t

x
AtkxAtxB 






2
coscos),(1  

Case (ii) 

  







 t

x
AtkxAtxB 






2
sinsin),(1  

(where A is the amplitude of the rf wave).  

When the rf field is just removed, we have: 

02 2

2

2

 n
nn U

dt

dU

dt

Ud
  

and the solution would essentially be equation (2.152): 

)(tUn =   t
nn etbta  sinhcosh  

It would be recalled: 
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










11

cos)(sin)(),(

n

n

n

ny

xn
tU

xn
tUtxM








 

Applying the initial condition: 

;0),( txM y  












11

0cos)0(sin)0()0,(

n

n

n

ny

xn
U

xn
UxM








 

since 


xn
sin 0 and 0cos 



xn
 

  00 nU  

  00sinh0cosh 0  eba  

00sinh0cosh ba  

0a  

(since 00cosh  ) 

Therefore,  

 
   

  tbetU

etbtU

n
t

n

t
nn









sinh

sinh





 (2.154) 

then  

 
t t

y n n

n 1 n 1

n x n x
M (x, t) be sinh tsin be sinh tcos

 
 

 

 
   

 
   (2.155) 

(where b is an arbitrary constant). 
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It is important to note that this method of solution to the problem requires 

that   be a sort of boundary condition parameter such that   tells us either: 

(a) how far the radio frequency wave can travel in the x-direction, or  

(b) how far we can allow the radio frequency wave to travel in the x-direction. 

The value of   can then be determined by the theory of NMR Physics or in an 

NMR experiment. 

Secondly, this method of solution will work best if      (where   is the 

wavelength of the radio frequency wave and m is a number whose value must 

be determined). 

We shall evaluate the integral in equation (2.153) in order to determine the 

particular solution and hence the general solution of Un(t) when          . 

The integral cannot be solved unless m is known. However, if we assume that 

m=1, so that we will have a representation of what the actual solution (for 

which the value of m is fixed) looks like: 

Case (i) 

),(1 txB 







 t

x
A 



2
cos  

Equation (2.153) becomes: 

 
2

2 on n
n2 0

2Fd U dU 2 x n x
2 U A cos t cos dx.

dtdt

   
      

     (2.156) 

In the integral, 

 
0

o

2AF 2 x n x
cos t cos dx

   
 

     (2.157) 
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we let:  

 

1
o

0
0

0

2 x n x
cos t cos dx

2 x n x 2 2 x n x
cos t sin sin wt sin dx

n n

2 2 x n x
cos 2 t sin n 0 sin t sin dx

n n








  
   

  

             
          

            

     
     

     







 

but Sin 0n : 

1
0

0
0

0
0

2 2 x n x
I sin t sin dx

n

2 2 x n x 2 x 2 x n x
Sin t . cos cos t . cos dx

n n n

2 2 x n x 2 2 x n x
sin t cos cos t cos dx

n n n









  
  

  

               
            

              

           
          

          





   

   

 

1 1

1 12 2 2

1 12 2 2

2 2
I sin 2 t sin t cos0 I

n n n n

2 2 4
I sin 2 t cosn sin t I

n n n

2 2 4
I sin 2 t cosn sin t I

n n n

  
 
  

  
      

  

 
    

 

 
     

 

  

but since   tt  sinsin   and,  

tttt  sinsin2coscos2sin)2sin(  , 

we have: 

 
 1 2

2
I cos n sin t sin t

n 4


      

 
 

 
 1 2

2
I cosn 1 sin t

n 4


  

 
 

The integral (equation (2.17)) becomes: 
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 
 0

2

4AF
cosn 1 sin t

n 4
 

 
 

and we write equation (2.156) as: 

 
 

 
2

2 0n n

2 2

4AFd U dU
2 Un cosn 1 sin t

dtdt n 4
      

 
 (2.158) 

If we assume a solution, 

 nU t Pcos t Qsin t     (Particular solution) 

ndU
Psin t Qcos t

dt
      

2
2 2n

2

d U
Pcos t Qsin t

dt
      

Equation (2.158) becomes: 

 

 
   

 
 

 

2 2 2 2

2 20

2

2 2 0

2

Pcos t Qsin t 2 Psin t 2 Qcos t Pcos t Qsin t

4AF
cosn 1 sin t P 2 Q cos t

n 4

4AF
Q 2 P sin t cosn 1 sin t

n 4

               

        
  

        
   

 

 

2 2

2 2

( )P 2 Q 0

2 Q
P

    


 

 

 

 
 

 1cos
4

4
2

2

022 


 


 n
n

AF
PP  
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 
   

 

 
 

 

2 2
2 2 0

2 2 2

2 2 2 2

0

2 2 2

4AF4 Q
Q cosn 1

n 4

Q 4 Q 4AF
cosn 1

( ) n 4

 
    

   

    
 

   

 

 

 
 

 

2 2

0

22 2 2 2 2

4AF cosn 1
Q

n 4 4

 


      

 

 
 

 
 

 
 

   

2 2

o

22 2 2 2 2 2 2

o

22 2 2 2 2

4AF cosn 12
P

n 4 4

4AF cosn 1 2

n 4 4

  


        

 
 

      

 

Therefore, 

 

 
 

   

 

 
 

 

n

0

22 2 2 2 2

2 2

0

22 2 2 2 2

4AF cosn 1 2
U t cos t

n 4 4

4AF cosn 1
sin t

n 4 4

 
  

   
       

 

 
   

  
       

 

 (2.159) 

Hence the general solution for       is: 
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   
 

 

 

 

 

 

 

0t
n n n 2

0

2 22 2 2 2

2 2

2
2 2 2 2

4AF cos n 1
U t acosh t bsinh t e

n 4

4AF cosn 12
cos t

n 44

sin t

4

 
    

 

 
 

  
      

 

 
  

 
     
 

 (2.160) 

Using the initial condition,          , it follows that: 

 










11

0cos0sin)0()0,(

n

n

n

ny

xn
U

xn
UxM








 

where        . That is, 

 
 

   

 

 
 

 

 

   

00

22 2 2 2 2

2 2

0

22 2 2 2 2

0

22 2 2 2 2

4AF cosn 1 2
acosh0 bsinh0 e cos0

n 4 4

4AF cosn 1
sin0 0 a 0,

n 4 4

4AF cosn 1 2
0

n 4 4

 
  

   
       

 

 
   

   
       

 

 
  

 
       

 

 (2.161) 

then, 

 
 

 
 

 

2 2

0t
n n 22 2 2 2 2

4AF cosn 1
U t be sinh t sin t

n 4 4


 

   
      

 

Therefore, 
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t
y n

n 1

2 2

0 2 2 2 2 2
n 1

t
n

n 1

2 2

0 2 2 2 2 2
n 1

t
y n

n 1

n x
M (x, t) be sinh t sin

(cos n 1) ( ) n x
4AF sin t sin

(n 4) ( ) 4

n x
be sinh t cos

(cos n 1) ( ) n x
4AF sin t cos

(n 4) ( ) 4

M (x, t) be sinh t si

























 



   
 

      


 



   
 

      

 









 t
n

n 1

2 2

o 2 2 2 2 2
n 1

2 2

0 2 2 2 2 2
n 1

n x n x
n be sinh t cos

(cos n 1) ( ) n x
4AF sin t sin

(n 4) ( ) 4

(cos n 1) ( ) n x
4AF sin t cos

(n 4) ( ) 4














 
 

 

   
 

      

   
 

      







 (2.162) 

Case (ii) 









 t

x
AtxB 






2
sin),(1 , 

Equation (2.153) becomes: 

 
2

2 on n
n2 0

2AFd U dU 2 x n x
2 U sin t cos dx

dtdt

   
      

     (2.163) 

and 

 
o

0

2AF 2 x n x
sin t cos dx

   
 

     (2.164) 

let 
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2
0

2
0

0

2

0

2 x n x
I sin t cos dx

2 x n x 2 2 x n x
I sin t sin cos t sin dx

n n

2 2 x n x
cos t sin dx

n

2 2 x n x 2 2 x
I cos t . cos sin t co

n n n








  
  

  

           
       

          

  
   

  

          
         

         







0

0
0

2

0

2

n x
s dx

2 2 x n x 2 2 x n x
cos t cos sin t cos dx

n n n

2 2 x n x 2
cos t cos I

n n n

2 2
cos(2 t)cos n cos( t) I

n n n n








  
 

  

           
        

          

       
     

      

  
     

  





 

but tt  cos)cos(   and )2cos( t  = tcos , it follows that: 

2 22 2 2

2 2 4
I cos t cosn cos t I

n n n

 
    

 
 

Re – arranging the above equation gives: 

 
 2 2

2
I cos n 1 cos t

n 4


  

 
 

Equation (2.164) thus becomes: 

 
 o

2

4AF
cos n 1 cos t

n 4
 

 
 

Then equation (2.153) can be written as: 

 
 

 
2

2 on n
n2 2

4AFd U dU
2 U cos n 1 cos t

dtdt n 4
      

 
 (2.165) 
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If we assume a solution of the form: 

nU (t) pcos t qsin t     

ndU (t)
psin t qcos t

dt
      

2
2 2n

2

d U (t)
pcos t qsin t

dt
      

Equation (2.165) becomes: 

 
   

 
   

2 2

2 2

2 20

2

2 2

2 20

2

pcos t qsin t 2 psin t 2 qcos t

pcos t qsin t

4F
cosn 1 cos t P 2 q cos t

n 4

q2 p sin t

4F
cosn 1 cos t P 2 q

n 4

0

         

    

        
  

     
 

      
 



 

 

 
 

 

2 2

o2 2

2

2
q p

4AF cosn 1
p 2 q

n 4




 


    

 

 

 
 

 

2 2 2 2
0

2 2 2

4AF cosn 1( )p 4 p

n 4

    


   
 

 

 
 2 2

0

2 2 2 2 22

4AF cosn 1
p

( ) 4n 4

 


     
 

 

 
0

2 2 2 2 22

4AF cosn 1 2
q

( ) 4n 4

 


     
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 

 
 

 
 

   

2 2

0
n 22 2 2 2 2

0

22 2 2 2 2

4AF cosn 1
U (t) cos t

n 4 4

4AF cosn 1 2
sin t

n 4 4

 
 

      

 
 

      

 (2.166) 

Equation (2.166) is the particular solution. The general solution for       is 

given as: 

 

   

 

 
 

 
 

   

t
n n n

2 2

0

22 2 2 2 2

0

22 2 2 2 2

U t acosh t bsinh t e

4AF cosn 1
cos t

n 4 4

4AF cosn 1 2
sin t

n 4 4

   

 
 

      

 
 

      

 (2.167) 

Again, the initial condition,           requires that: 

 

 
 

 
 

 
 

   

n

2 2

00

22 2 2 2 2

0

22 2 2 2 2

U 0 0

4AF cosn 1
acosh0 bsinh0 e cos0

n 4 4

4AF cosn 1 2
sin0 0

n 4 4



 
 

      

 
 

      

 

This implies: 

 ,0a
 

 
0

2

4AF cosn 1

n 4



 
 

 2 2

2 2 2 2 2( ) 4

 

    
 = 0 (2.168) 

 

   
0t

n n 22 2 2 2 2

4AF cosn 1 2
U (t) be sinh t sin t

n 4 4

  
   

      
  (2.169) 
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then, 

 

 

 
 

   

t
y n 0 2

n 1 n 1

t
n2

2 2 2 2
n 1

0 22 2 2 2 2
n 1

t t
y n

n 1 n 1

cosn 1n x
M (x, t) be sinh t sin 4AF

n 4

2 n x n x
sin tsin be sinh t cos

4

cosn 1 2 n x
4AF sin t cos

n 4 4

n x
M (x, t) be sinh t sin be Sin

 


 










 
 

 


  

  

  
 

     

  
 

      


  



 





 

 

   
 

   

n

0 22 2 2 2 2
n 1

0 22 2 2 2 2
n 1

n x
h t cos

cosn 1 2 n x
4AF sin tsin

n 4 4

cosn 1 2 n x
4AF sin t cos

n 4 4














  
 

      

  
 

      





(2.170) 

In equation (2.170) the following parameters are defined: 

(i) 0
0

T2vn vn
2 T

2

 
    

 
 

 
2

2 20
0

T vn n
T v

4

  
     

  
 

(ii) 
2

2 20
g

T vn n
T v

  
     

  
 

(iii) 

2 22
2 2 2 2 20

g

22
20

g

22
2o

g

T n n
v T v

4

T n
T 2v

4

T n
T 2v

4

    
           

    

 
    

 

 
     

 
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(iv) o
o

T vn 2 vn
2 2 T

2

   
       

  
 

2 2
2 2 2 2 2 2 2

o o o

2 vn vn n
4 T T 4 T 4 v

      
             

     
 

2.16  Solutions to the NMR Travellling Wave Equation 

Based on equation (2.35), the NMR wave equation can be written in the form: 

       

    
    

    
      (t) (2.171) 

or 

      

       - 
    

    
 +      (t) 

       

          (t) - 
    

    
 (2.172) 

In generalizing equation (2.172), we write: 

 v
2                  

    

    
 (2.173) 

In the polar coordinate, equation (2.173) becomes: 

 v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    )             
    

    
 (2.174) 

Case (1) 

For a steady state condition, 
    

    
  , and equation (2.174) becomes: 

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    ) =      (t) 

(a) The homogeneous equation gives: 

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    ) = 0   [M0=0 or          ] 
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And the solution follows exactly as in the case of the diffusion equation, that 

is: 

   (r,    = 
  

 
 +     

    (   Cosm  + Bm sin m ) (2.175) 

(b) The inhomogeneous equation is:  

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    ) =      (t) 

We need to give a definition to the function    (t) before solving it. 

Case (ii) 

If 
   

  
     and    =0 or         , (2.4) becomes: 

 v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    )     
    

    
 (2.176) 

We can then write that: 

 
    

   
 

 

 
 
   

  
   

 

  
 
    

       
 

   
    

   
 (2.177) 

By the method of separation of variables we have: 

    R(r)          

   

  
    

  

  
,  

    

   
      

   

    
,  

   

  
    

  

  
,  

    

       
   

    

   

  
    

  

  
,  

    

    
    

   

   
 

Equation (2.177) becomes: 

  
   

   
   

  

 
 
  

  
   

  

  
 
   

       
  

   

   

      
 

Multiplying all through by 
 

   
,  



 

Theory, Dynamics and Applications of Magnetic Resonance Imaging-I 
 

104  http://www.sciencepublishinggroup.com 

 

 

   

   
  

 

  
 
  

  
   

 

   

   

     
    

 

  
  
 

 

   

   
 

Both the RHS and LHS must be equal to a constant:     

 

 

   

   
  

 

  
 
  

  
   

 

   

   

     
    

 

  
  
 

 

   

   
       

 

 

   

   
  

 

  
 
  

  
   

 

   

   

     
       

 
  

 

   

   
   

 

 

  

  
   

 

 

   

             (2.178) 

 
   

   
         (2.179) 

If we assume that: 

T       

Then equation (2.179) becomes: 

         

         

T(t)      
        

                                       (2.180) 

Equation (2.178) can be written as: 

  

 

   

   
   

 

 

  

  
           

 

 

   

   
 

This equation must also be equal to a constant   , 

  

 

   

   
   

 

 

  

  
           

 

 

   

   
       

Where  
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              (2.181) 

and  

  
 

 

   

          (2.182) 

From (2.181), we obtain:  

  
   

   
    

  

  
           ) R    

A solution of which is given as: 

 R(r)                      (2.183) 

From (2.182), we write that: 

 
   

          (2.184) 

If we assume that: 

         

it follows from (2.184) that: 

      
 
 

         

Therefore,          
         

     . 

From which we have that: 

                Qsin   (2.185) 

P        , Q          ) 

Therefore, 

         
         

     } {                                    (2.186) 
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We can then make use of the appropriate boundary condition as required. 

Case (iii) 

If  
   

  
     and,        and     t)   , 

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    )         

    
        (t)       (2.187) 

If we write that:  

                          

   

  
   

  

  
, 
    

   
   

   

   
      

   

  
   

  

  
, 
    

      
   

   , 
   

  
   

  

  
     (t), 

     

   
   

   

    
        (t) 

Hence equation (2.187) becomes: 

     
   

   
  

 

 
 
  

  
  

 

  
 
    

       
    

   
      (t) (2.188) 

If we simplify the problem by assuming: 

             

Then equation (2.188) becomes:  

     
   

   
  

 

 
 
  

  
    

 

  
 
    

       
    

   
  (2.189) 

 
   

   
  

 

 
 
  

  
    

 

  
 
    

       
 

 

   

   
    (2.190) 

The solution to this equation is: 

X(r,          
         

                                      

        

Therefore, the general solution in this case is: 
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 {                                            (2.191) 

Case (iv) 

If     is radially symmetric, it does not depend on   and if              

we have: 

v
2 
( 
    

   
 

 

 
 
   

  
)   

    

   
 

 
   

  
  

 

 

   

  
     

 

    
     

   
  (2.192) 

By the method of separation by variables, we have: 

             

    

   
   T

   

   
    

   

  
   

  

  
,  

     

   
   

   

   
 

Equation (2.192) becomes: 

T
   

   
   

 

 
 
  

  
    

 

  
   

   
 

Multiplying all through by 
 

  
, 

 
 

 

   

   
   

 

  

  

  
    

 

  
  
 

 

   

   
 (2.193) 

It follows that: 

 

 

   

   
    

 

  

  

  
     

 

  
  
 

 
 
   

   
       

Where we have: 

 

 

   

   
   

 

  

  

  
       



 

Theory, Dynamics and Applications of Magnetic Resonance Imaging-I 
 

108  http://www.sciencepublishinggroup.com 

 
   

   
   

 

 

  

  
           (2.194) 

and  

 
 

  
 . 

 

 

   

   
       

 
   

   
         (2.195) 

The solution of equation (2.194) is given as:  

R(r)                     

To solve equation (2.195), we write: 

T(t)      

Then equation (2.195) becomes: 

         

         

Hence, 

T(t)     
         

     

Therefore, 

              
         

                              (2.196) 

We can then apply the boundary conditions as appropriate. 

2.17  MRI Bessel Equation 

We study the flow properties of the modified time independent Bloch NMR 

flow equations which describes the dynamics of the hydrogen atom under the 

influence of rf magnetic field as follows: 
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1

10

02

2

2 )(
)(

T

xBM
MxS

dx

dM
vT

dx

Md
v y

yy 
  (2.197) 

where  

2 2
1 g g

1 2

1
S(x) B (x) T , T

T T
    , 

0
1 2

1 1
T

T T
   

However, if the fluid velocity is dependent on x as follows: 

 


x
v    (2.198) 

where   is the time required for the spins to cover the distance x. Since v is no 

longer constant, we may write: 

 
1

10

02

2

2 )(
)(

T

xBM
MxS

dx

dM
v

dx

dv
T

dx

Md
v y

yy 









  (2.199) 

 

2
y y2 0 1

0 y2
1

d M dM M B (x)1
v T v S(x)M

dx Tdx

 
    

 
 (2.200) 

If we design the radiofrequency field such that: 

 
r

1

G
B (x) i x , , r 1

 
     


 (2.201) 

where   is the gradient magnetic  field,   is the gyromagnetic ratio and   is the 

length of time for which the gradient pulse is applied and the time  is defined 

as: 
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1 2

1 2

T T

T T
 


  (2.202) 

If the NMR signal is sampled when the applied radiofrequency energy 

successfully displaces most of the spin unto the transverse plane (M0 ≈ 0), 

equation (2.197) then becomes: 

 
2 2

y y2 2
0 y2

1 2

d M dM G 1
v 2T v x M 0

dx T Tdx

   
         

 (2.203) 

 

22
y y2 2 21 2 1 2 1 2

y2
1 2 1 2 1 2 1 2

d M dMT T T T T T1
x 2x ( G ) x M 0

T T T T dx T T T Tdx

     
           
       

 (2.204) 

If we also set,  

k G    

and 

 
   20

2

21

212

T

T

TT

TT g



  (2.205) 

we may therefore write: 

  
2

y y2 2 2 2
y2

d M dM
x 2x k x M 0

dxdx
      (2.206) 

Equation (2.206) is an equation transformable to Bessel function [60]. Since 

we require that the transverse magnetization be finite as x tends to infinity, the 

solution is given as: 

 y 1 nM (x) C xJ (kx)  (2.207) 

where:  
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2

1 2
n  (2.208) 

Phase of the Spin 

In equation (2.205), if we set:  

kx  (2.209) 

y y y

2 2 22 2
y y y y2

2 2 2 2

dM dM dMd
k

dx d dx d

d M d M dM d Md d
k

dx ddx d dx d


 

 

  
   

  

 

Equation (2.206) becomes: 

 
2

y y2 2 2 2 2
y2

d M dM
k x 2kx k x M 0

dd
   


 

  
2

y y2 2 2
y2

d M dM
2 M 0

dd
      


 (2.210) 

We shall make another transformation as follows: 

 


U
M y    (2.211) 

 

322

2

2

2

2

221

1





U

d

dU

d

Ud

d

Md

U

d

dU

d

dM

y

y





  (2.212) 

Hence, equation (2.211) becomes:  

 
2

2 2 2

2 2 3 2

1 d U 2 dU 2U 1 dU U U
2 0

d dd

   
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d U U
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
 (2.213) 

 

2 2

2 2

d U
1 U 0

d

 
      

  (2.214) 

Based on the Short Gradient Pulse (SGP) approximation [66], the parameter 

  represents the phase of the spin such that the effect of a gradient pulse of 

duration τ on a spin at position x is given by, neglecting the effect of the static 

field, 

 )()( xxGx    (2.215) 

Hence, if we consider the phase change of a spin which was at position    

during the first gradient pulse and at position    during the second, then the 

change in phase in moving from    to    is given by  

 )()( 0101 xxGxx    (2.216) 

Therefore, we see that: 

 
2

0

2

2

))(( Tx

Tg




   (2.217) 

2.18  Equation of Motion for Pulsed NMR 

In a typical MRI procedure where G is the pulsed gradient applied for the 

length of time , equation (2.40) becomes: 
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y y2 2 o 1
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    
       
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 (2.218) 

where 

GxxB  )(1  

and  



x
xTv o   

For 90
o
 pulse Mo is minimum (say Mo = 0), we can write equation (2.218) as: 
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  (2.219b) 

where 

 
oT

1
 (2.220) 

Equation (2.219) is a general form of an equation transformable into Bessel 

equation of order   with parameter k. In equation (2.219), the flip angel is 

defined as: 

 (sec)))(sec()( 11  GGradrad   (2.221) 
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Fig. 2.1  The NMR Pulse sequence. 

Equation (2.219) presents new ways of generating the NMR signal using the 

Bessel functions. As shown in figure 1, the experiment is started with a 
 

 
 pulse, 

following which the magnetic vector My precesses in the plane perpendicular to 

the direction of static magnetic field    and free induction decay (FID) occurs. 

The maximum amplitude of the FID is measured to obtain a voltage-amplitude. 

After a delay which is typically of the order of 10ms, a π rf pulse is introduced. 

Following another interval , the magnetic spins recluster and a spin echo 

voltage signal is observed. The voltage amplitude of the spin echo is taken as 

proportional to My, equation (2.219) is then solved. To solve equation (2.219b), 

the value of G must be known, as well as the gyromagnetic ratio   of the 

specific nuclei under study. The voltage amplitude of the spin echo My is easily 

computed by solving the Bessel equation of order   and parameter  as shown 

in equation (2.219b) where:  
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 gT   (2.222a) 

and 

  G  (2.222b) 

2.19  Application to Molecular Imaging 

In this section, new magnetic resonance methodology to solve the Bloch 

NMR flow equation based on Hermite, Bessel and simple quantum mechanical 

functions for detailed studies of processes taking place at the molecular level in 

living tissues have been developed. We show how these quantum mechanical 

functions may be very crucial in the assessment of Cancer cells, Multiple 

sclerosis (MS) and Brain edema using magnetic resonance imaging.  

We apply a fundamental transformation procedure on equation (2.40) given 

by:  

 
x

yM (x) (x)e   (2.223a) 

provided that: 

 
02

1

vT
 , (2.223b) 

Equation (2.40) becomes: 

   0)(
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where  
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TT
Tg  ; 2

04

1

T
TR   (2.224b) 

and G is the strength of the gradient field. With further assumptions: 

 GxixB  )(1
; x

v

G
i


  ; (2.225) 

we obtain:  
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If we make another transformation as follows: 
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 
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v
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 



, (2.227) 

we have: 

 

2
y y

y2

d M dM
2 2nM 0

dd
   


 (2.228) 

and given that: 

 
g RT T (2n 1) Gv

1

    


  
, (2.229) 

the final solution becomes: 

n
n 2 2

y n n

G G d G
M (x) H i x ( 1) exp x exp x

v v vdx

      
               

  (2.230a) 

where  
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




Gv

TT
n

gR


 (2.230b) 

From equations (2.222, 2.230), the term 
1


 represents the phase change of 

the spin at the position x, provided that the relaxation times T1 and T2 are 

properly chosen to represent the gradient pulse duration in the pulsed-field 

gradient (PFG) NMR as shown in figures 2.2-2.3. 

 

Fig. 2.2  Plots of the transverse magnetization My against the absolute (positive) values 

of α using the relaxations time – values of kidney at 1.5T [3], G = 10mT/m, γ = 42.5781 

x 10
6
/T/s for (a) v = 3.0m/s (b) v = 0.3m/s (c) v = 0.003m/s (d) v = 0.000003m/s. 
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Fig. 2.3  Plots of the transverse magnetization My against the absolute (positive) values 

of α; G = 10mT/m, γ = 42.5781 x 10
6
/T/s, v = 0.000003m/s using the relaxations time – 

values, at 1.5T [3], of (a) skeletal muscle (b) heart muscle (c)liver (d) kidney (e) spleen 

(f) fatty tissue (g) gray brain matter (h) white brain matter. 
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It is observed from figures (2.1) and (2.2) that as the fluid velocity reduces as 

often encountered in cellular processes, the imaging equation as given in 

equation (2.224) shows contrast in terms of MR signals. Figure (2.2) shows that 

the behaviour of the MR signals is completely different for different tissues. It 

is quite interesting to note that the magnitude of the signals becomes so large at 

the molecular level. This can make it possible to follow processes at molecular 

level in real time with brighter images. 

2.20  The Hermite Polynomials 

Based on equations (2.224-2.225), equation (2.40) becomes: 

   0)(
)( 22

2

2

 xx
dx

xd



 (2.231) 
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T
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where G is the strength of the gradient field, The solutions of equation (2.40) 

are shown in table 1;  
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Table 1. Solution of the Bloch NMR flow equation in terms of Hermite Polynomials. 
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where:  12  n
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  
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 and n = 0, 1, 2, 3, 4, 5,......... (2.232) 
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Fig. 2.4  Plots of fluid velocity against parameter n when G = 10mTm
-1

, γ = 42.5781 x 

10
6
T

-1
s

-1
 using the relaxations time – values, at 1.5T [3], of (a) skeletal muscle (b) heart 

muscle (c)liver (d) kidney (e) spleen (f) fatty tissue (g) gray brain matter (h) white brain 

matter. 
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Fig. 2.5  Plots of transverse magnetization against v and x; G = 10mTm
-1

, γ = 42.5781 

x 10
6
T

-1
s

-1
 using the relaxations time – values of kidney at 1.5T [2] for (a) n = 0 (b) n = 

1(c) n = 2 (d) n = 3. 

Based on equation (2.232) and figure (2.3), the highest velocity is recorded 

when n = 0 and the velocity decreases when n increases. For each value of n, 

the NMR signal at the molecular level is obtained as  Based on equation (2.232) 

and figure (2.4), the highest velocity is recorded when n = 0 and the velocity 

decreases when n increases. For each value of n, the NMR signal at the 

molecular level is obtained as shown in table 1 and equation (2.218). If Ax
2
 is 

defined as the cross sectional area of blood vessels, the method can be very 

useful in estimating blood flow in capillaries or veins at the molecular level, 

especially in the assessment of angiogenesis and cancer proliferation. It is 

worthy of note that as the values of n increases (moderate decrease in the fluid 

velocity), the signal behaves like that of electron spin resonance (Figs 2.5c and 
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2.5d). This may be very important in the imaging of the complex molecular 

changes often observed in cancer cells. 

2.21  Application to Multiple Sclerosis 

Multiple sclerosis (MS) is an inflammatory disease in which the fatty myelin 

sheaths around the axons of the brain and spinal cord are damaged, leading to 

demyelination and scarring as well as a broad spectrum of signs and symptoms. 

MS affects the ability of nerve cells in the brain and spinal cord to communicate 

with each other effectively. Nerve cells communicate by sending electrical 

signals called action potentials down long fibers called axons, which are 

contained within an insulating substance called myelin. In MS, the body's own 

immune system attacks and damages the myelin. When myelin is lost, the axons 

can no longer effectively conduct signals [67]. Although much is known about 

the mechanisms involved in the disease process, the cause remains unknown.  

MRI has been considered to be the most informative noninvasive method to 

diagnose and monitor disease progression in patients with multiple sclerosis 

(MS) [68]. However, conventional T2-weighted MR images do not sufficiently 

correlate with histo-pathological substrates and clinical disability [68]. 

Conventional T2-weighted images are unable to distinguish underlying histo-

pathological substrates, such as inflammation, edema, demyelination, gliosis, 

and axonal loss, because all of these lesions have identical high signal on T2-

weighted images. We study equation (2.206) when the transverse magnetization 

is finite as x tends to infinity. The solution is given as:  

 )kx(JxC)x(M ny 1  (2.233a) 

where:  
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2

1 2
n  (2.233b) 

Since the abnormalities observed in MS mostly involve the white matter (T1 

= 0.78s, T2 = 0.09s), gray matter (T1 = 0.92s, T2 = 0.10s) and CSF (T1 = 4.50s, 

T2 = 2.30s), we shall make use of their relaxation properties at 1.5T to compare 

their transverse magnetization for different ranges of x as shown in figure 2.5. 

  

(a1) (a2) 

  

(a3) (a4) 
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(b1) (b2) 

  

(b3) (b4) 

  

(c1) (c2) 
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(c3) (c4) 

Fig. 2.6  Plots of transverse magnetization against x for C1 = 10, G = 0.033T/m and τ = 

0.02s; using the relaxation times of (ai) CSF in milli range (a2) CSF in micro range (a3) 

CSF in nano range (a4) CSF in pico range (bi) Gray matter in milli range (b2) Gray 

matter in micro range (b3) Gray matter in nano range (b4) Gray matter in pico range 

(ci) White matter in milli range (c2) White matter in micro range (c3) White matter in 

nano range (c4) Whiet matter in pico range. 

The results obtained in Fig. 2.6 confirm what has been observed in T2 – 

weighted MR experiments. Changes in relaxation times that are direct 

indication of histo-pathological substrates do not contribute significantly to the 

magnitude of the MR signal. That is, dynamics of these important substrates 

cannot easily be seen on MR scans. However, from figure 2.6, we have 

observed that the transverse magnetization is actually responding very slowly to 

small changes in T0. The magnitude of My is changing very slowly from one 

tissue to another. Secondly, we see that whenever x is in the microscopic range, 

the behavior of My changes uniquely and since most tissue processes are found 

in this geometrical range, inflammation, edema formation, demyelination, 

gliosis and axonal may easily be imaged. However, to realize this, the MR 

algorithm must be designed such that C1 takes on very high values in order to 

improve signal magnitudes. Finally, we suggest that higher static field strength 

may be required for good MR assessment of multiple sclerosis, although the 
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influence of such high fields and the associated gradient fields on normal tissue 

functions must first be taken into consideration. 

2.22  Bloch - Torrey Equation for NMR Studies of 

Molecular Diffusion 

Since the diffusion coefficient varies very slowly with the radial distance r, it 

is interesting to note that B1(x,t) in equation (2.33) can be defined appropriately 

based on the problems to be solved. For example if we define B1(x,t) as: 

    1 yB r, t f (r)M r, t   (2.234) 

Parameter f(r) in equations (2.234) can be appropriately defined to solve 

specific biological and medical problems. Generally, equation (2.33) becomes: 

 
y y2

0 y2

M MD
r F f (r)M

t r rr

  
  

   
 (2.235) 

The Bloch –Torey equation for the magnetization density My(r,t) arising from 

spins diffusing with diffusion coefficient D and an arbitrary time-dependent 

linear gradient field is obtained from equation (2.33) if we define B1(x,t) as: 

    1 yB r, t igf (t)M r, t    (2.236) 

where g denotes the product of Fo and the gradient strength, the  gradient field 

has the temporal shape function f(t) in the direction x,  where r is is the position 

vector of the spin. For one dimensional motion, equations (2.33) becomes: 

  
2

y y

y2

M M
D igf (t)M x, t

t x

 
 

 
 (2.237) 

Equation (2.237) is the Bloch-Torrey equation which has been solved for the 

NMR study of molecular diffusion [69, 70]. 
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2.23  Adiabatic Model of Bloch NMR Flow Equation 

In this section, we consider equation (2.25) under adiabatic condition when 

the rf B1 field is a constant. The adiabatic condition is defined as: 

 
2 2

1
1 2

1
B (x)

T T

 
   

 
 (2.238) 

Based on equation (2.238), equation (2.25) can be written as: 
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 (2.239) 

where 

 101 2
1  xxvT   for real value of  v (2.240) 
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
  when                       (2.241) 

 11 BT    (2.242) 

For human blood flow of T1 = 1.0s, the parameter   is a real constant which 

completely defines constant values of rf B1 field for the NMR system [71, 72].  

 1B   (2.243) 

The application of equation (2.239-2.242) has been demonstrated [71]. 

2.24  Application of Time Dependent Bloch NMR Equation 

and Pennes Bioheat Equation to Theranostics 

Theranostics is the combination of therapeutics and diagnostics. It has been 

regarded as a key part of personalized medicine and requires considerable 
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advances in predictive medicine; novel theranostic agents are developed and 

carefully designed for in vivo quantitative assessment of the amount of drug 

reaching a pathological region and the visualization of molecular changes due to 

the therapeutic effects of the delivered drug. This study intends to 

mathematically model a closely knitted theranostic method in which a specially 

selected radiofrequency field is used to heat up a tissue and at the same time 

cause the spins of the tissue to emit MR signals.  

The key to this application is the specific absorption rate (SAR) which drives 

both rf power heating within a tissue and is related directly to the B1 field which 

is needed to cause spin resonance. If we consider bioheat flow in one direction 

[73, 42] with uniform tissue properties, we have: 

 )(
2

2

bbb TTcwSAR
x

T
k

t

T
c 









  (2.244) 

where ρ is tissue density, c is the specific heat of tissue, T is the tissue 

temperature, t is the time, wb is the blood perfusion rate, cb is the specific heat of 

blood, Tb is the supplying arterial blood temperature, k is the thermal 

conductivity of tissue, and x is the distance from the skin surface. SAR is the 

applied rf power per unit volume. If the tissue temperature changes very slowly 

with x, we have: 

 b b b

T
c SAR w c (T T )

t


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
 (2.245) 

The solution to equation (245) is given as follows: 
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If the tissue temperature before the application of the rf field does not defer 

significantly from the arterial temperature, the initial the condition for this 

problem is given as: 

 bT(t 0) T   (2.247) 

We finally have: 

 b b
b

b b

w cSAR
T(t) T 1 exp t

w c c

  
     

  
 (2.248) 

SAR and Oscillating Magnetic Field: The rf power for the voxel volume Vvox 

is Prf = (SAR) Vvox
 
. The energy of the oscillating radio wave is given as Erf = 

ћγB1, whose rate of change is: 
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t

E SAR V dt   (2.249) 

 

vox
1 0

V
B (t) (SAR)(t t )    (2.250) 

SAR and Time dependent NMR Equation: We can relate time dependent 

MRI signal to SAR using the time independent NMR equation [42] given by 

equation (2.251) and (2.252): 

    
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y y 2 2 o
o g 1 y 12

1

d M dM M
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dt Tdt
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1 2

1
T

TT
  and 0

1 2

1 1
T

T T
   (2.252) 

If we sample the signal when the transverse component of the magnetization 

has the largest amplitude, we write M0 ≈ 0. Provided that the condition    

    
     holds, equation (2.251) becomes [42]: 
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From equations (2.251) and (2.252), we obtain: 

 
22

y y 2 2vox
o 0 y2

d M dM V
T (SAR) (t t ) M 0

dtdt

 
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If the rf B1 field is applied at time t0 = 0, we have: 

 
n n 2 2vox vox 0

y 1 n 2 n

V V 1 T t
M (t) ( ) (t) C J t C Y t ; n

2 2 2

     
       

    
 (2.259) 

This solution is valid for           . It is always required that the 

transverse magnetization be finite as time tends to infinity, hence, we write: 

 

0 0

0

1 T t 1 T t

2vox2 2
y 1 1 T t

2

V
M (t) C ( ) (t) J t

2

 



 
   

 
 

(2.260) 

The results obtained in equations (2.248, 2.260) have been simulated with 

relaxation parameters of human liver at 1.5T [74] and the corresponding thermal 

properties [72, 73]: T1 = 0.610s, T2 = 0.057s, wb = 2.86kg/m
3
s, cb = 3960J/kg.K, 

ρ = 1060kg/m
3
, c = 3600J/kg.K. Plots (a) and (b) (SAR = 4W/m

3
) give the 

distribution of the tissue temperature and transverse magnetization on a log 

scale while plot (c) (SAR = 40000W/m
3
) gives the density plot of the transverse 

magnetization as a function of time and tissue temperature.  
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Fig. 2.7  show (a) Temperature profile (b) Transverse magnetization profile (c ) density 

image. This shows that provided the conditions which led to equation (2.248) are met, 

real time theranostic imaging can easily be done with equations (2.248, 2.260). 

The temperature distribution and the rf power needed to generate rf B1(t) field 

within the medically acceptable SAR limit during MRI scanning procedure have 

been investigated by solving the Pennes Bioheat equation  in terms of MRI 

parameters. The relationship between temperature, SAR and rf B1(t) at any 

given time (under the assumed conditions)  is clearly shown in equations (2.248, 

2.260) and Fig.2.7. a, b, c. With this, accurate estimate of the amount of rf field 

needed for a particular power deposition for safe imaging of different tissues 

can be done. What is most interesting about the results in this study is that time, 

SAR and voxel volume can easily be used to manipulate the range of 
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temperature needed for therapy without unnecessarily increasing the tissue 

temperature. These changes directly influence the NMR signal as clearly 

illustrated in Fig, 2.7c and shows that we can do tissue imaging and temperature 

mapping at the same time. 

2.25  Summary 

The major contributions of this book can be seen at a glance by the 

development of the following differential equations derived from the Bloch 

NMR flow equations. These differential equations can be referred to as the 

Awojoyogbe-Bloch NMR flow equations. 
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The ideal approach to exhaust most of the quantitative and qualitative 

information for studying biological systems at the macroscopic and microscopic 

levels by magnetic resonance imaging technique with particular reference to the 

theory, dynamics and applications of MRI would be to find generalized (time 

dependent and time independent) analytical solutions to these equations. The 

advantages of such solutions are related to the fact that the magnetizations and 

signals obtainable from them are synthesis of many parameters that are of 

clinical importance for most magnetic resonance imaging analyses. 

Solutions to these equations will result to new developments in MRI physics. 

Quantitative and computational analyses, mathematical modeling and analytical 

solutions of these equations can lead to breath taking innovations and novel 

applications of MRI for improved health care. High quality and novel 

contributions related to biological, biomedical, clinical, geophysical and any 

other exciting applications are welcomed in the next volume of this book. All 

proposals can be addressed to the editor at abamidele@futminna.edu.ng or 

awojoyogbe@yahoo.com. 

mailto:abamidele@futminna.edu.ng
mailto:awojoyogbe@yahoo.com


 

Theory, Dynamics and Applications of Magnetic Resonance Imaging-I 
 

136  http://www.sciencepublishinggroup.com 

2.26  Conclusion 

In this chapter, we have modeled the Bloch NMR flow equations into Bessel 

equation, Diffusion equation, Wave equation, Schrödinger’s equation, 

Legendre’s equation, Euler’s equation and Boubaker polynomials. While the 

detailed analytical solutions of the time dependent NMR flow equation and the 

NMR wave equation are presented, solutions to other several equations that may 

be derived from equation (2.18) are available in standard textbooks on physics, 

mathematics and engineering mathematics. With appropriate initial and 

boundary conditions, solutions to these equations can be applied to solve most 

problems that may enhance the theory, dynamics and applications of MRI. This 

may open a large window of opportunities for researchers in all  research fields 

to contribute to this high intellectually adventurous field thereby improving the 

image quality with better treatment of deceases at the most affordable cost. It is 

hoped that due to the ability of magnetic resonance imaging to probe right to the 

fundamental level, scientists may be able to image human cellular functions and 

such imaging modalities would definitely help in the understanding of the 

human diseased conditions. Information gathered from the images can then be 

added to the present medical database to make it more comprehensive and thus 

permit the physician to make a more specific diagnosis, prognosis and possibly 

the appropriate therapy. The basic challenge in this direction is finding the right 

mathematical frameworks which appropriately describe the processes involved. 
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