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In this chapter the theory of gravitation in flat space-time stated in the 

previous chapter I is applied to static spherically symmetric problems with the 

matter tensor of a perfect fluid. 

It is useful to introduce spherical polar coordinates  , ,r    with 

 1 sin cosx r   , 2 sin sinx r   , 3 cosx r  . (2.1) 

We get by simple computations 

 11 1  , 2
22 r  , 2 2

33 sinr  , 44 1   , 0ij   i j . (2.2) 

Then, we have 

 
1/2 2 sinr   . 

The non-vanishing Christoffel symbols of the metric are 

 

1 2 2 3 3 1 2
22 12 21 13 31 33

2 3 3
33 23 32

1 1
, , , sin ,

sin cos , cot

r r
r r



  

             

      

. (2.3) 

2.1  Field Equations, Equations of Motion and Energy-

Momentum 

The potentials are written in the form 

 
 

   

   

11 22 33

2 2 2

44

, , ,
sin

, 0,ij

g r g r
g f r g g

r r

g h r g i j


  

   

 (2.4a) 

It follows 

 

 

2 2 2

11 22 33

44

1 sin
, , ,

1
, 0,ij

r r
g g g

f g g

g g i j
h


  

   

 (2.4b) 

We get 
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  
 

2
1/2

1/2

sinr
G

g fh


  , 

 

1/2

1/2

1G

g fh

 
 

 
, (2.5) 

For a body at rest we have 1 2 3 0,u u u    i.e. it follows from relation (1.13) 

 4 1/2u ch . (2.6) 

Then, the matter tensor of a perfect fluid (1.28) is given by 

 

   

 

 

2

2

, 1,2,3

, 4

0.

i

j
T M pc i j

c i j

i j



  

   

 

 (2.7) 

We get from the equations (1.21a) and (1.9) by the use of (2.4) and (2.5) the 

energy-momentum tensor of the gravitational field 

 

     

 

   

 

1 2

1

1 2

1
, 1

16

1
, 2,3

16

1
, 4

16

0,

i

j
T G L L i j

L i j

L L i j

i j







    

  

   

 

 (2.8) 

Here, 

 
 

2 2 22

1 1/2

' ' ' 1 ' ' '
2 2

2

f f g h f g h
L

f g h f g hg fh

       
                     

, (2.9a) 

 
 

2

2 2 1/2

4 f f g
L

fr g fh

 
   

 
, (2.9b) 

 1 2L L L  , (2.9c) 

where the prime   denotes differentiation with regard to the distance r . The field 

equations (1.24) with 0   give by the use of the covariant derivatives the 

following three equations: 
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   

 
2 2

2 2
12 1/2 2 1/2 2

1 ' 2 1
2

2

d f f f f g
r L c p

dr fr r fg fh g fh
 

  
      
 
 

, (2.10a) 

 
   

 
2 2

2 2
22 1/2 2 1/2 2

1 ' 1 1
2

4

d f g f f g
r L c p

dr gr r fg fh g fh
 

  
      
 
 

, (2.10b) 

 
 

 2 2

2 1/2

1 '
2 3

d f h
r c p

dr hr g fh
 

 
    
 
 

. (2.10c) 

The conservation law of the energy-momentum (1.25a) implies 

  2
2 1 2

4
16 0

d d
L L L c p

dr r dr
    . 

It follows by multiplication with 3r  

    3 2 2 3
2 1 1 2 16

d d
r L L r L L c r p

dr dr
      . (2.11) 

The equations of motion (1.29a) yield 

 
1 ' ' 1 '

2
2 2

d f g h
p p

dr f g h


 
    

 
. (2.12) 

In addition to the equations (2.10), (2.11) and (2.12) we have an equation of 

state 

  p p  . (2.13) 

The natural boundary conditions are for     

   1,f r    1g r  ,   1h r   (2.14a) 

and for 0r   

 
     

2 2 2

1/2 1/2 1/2

' ' '
0, 0, 0

f f f g f h
r r r

f g hg fh g fh g fh
   . (2.14b) 
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2.2  Gravitational and Inertial Mass 

Let us assume a spherically symmetric star with radius 0r . Then, the 

boundary condition of the pressure has the form  

  0 0p r  . (2.15) 

The mass and the pressure are defined by 

  
0

2

0

4

r

M r r dr   ,  
0

2

0

4

r

P r p r dr  . (2.16) 

We get from (2.10c) with the aid of the boundary conditions (2.14) for r > 0r  

 
 

 2

2

3'
2

k M Pf h
r

g fh h c


   (2.17) 

where (1.14) is used. Equation (2.17) gives by integration and the boundary 

conditions (2.14) for r > 0r  

  
 

2 2

3 1 1
1 2

k M P
h r O

rc r

  
    

 
. (2.18) 

Equation (2.18) implies the gravitational mass 

 3gM M P  . (2.19) 

The inertial mass iM  is given by 

     4 42 2

4 4
4iM c T M T G r dr    (2.20) 

It follows by the use of (2.7), (2.8) and (2.16) 

  
2

2
1 2

0
16

i

c
M M r L L dr

k



   . (2.21) 

We put by virtue of (2.14a) and r >> 0r  



Chapter 2  Static Spherical Symmetry 
 

http://www.sciencepublishinggroup.com  31 

 
2

1
1 2f O

r r

  
    

 
,

2

1
1 2g O

r r

  
    

 
. (2.22) 

Equation (2.10) gives by integration and the use of (2.14b) 

   

 
 2 2 2

1/2 1/2 2

0 0

'
2 2

r r
f g gf g f

r dr c r p dr
g fg fh g fh

 


    . 

It follows for r   with the aid of (2.18), (2.22) and (2.16) 

 
 

 
 

1/2 2 2

0

f g gf k
dr M P

f cg fh





   . (2.23) 

The existence of the integral of equation (2.23) gives by using (2.18) and 

(2.22)   ,i.e., we have 

 
2

1
1 2f O

r r

  
    

 
, 

2

1
1 2g O

r r

  
    

 
. (2.24) 

We assume the natural boundary conditions as r   

3
1 0r L  ,   3

2 0r L  ,   3 0r p  . 

Then, equation (2.11) implies by integration  

 

     

 

3 2 2 3
2 1 1 2

0

2 2

0

16

 48 .

r

r

r L L r L L dr c r p r

c r p r dr





   







 (2.25) 

Hence, we get for r   by the use of (2.18), (2.24), (2.15) and (2.16) 

  2
1 2 2

0

48
k

r L L dr P
c



   . (2.26) 

Substituting equation (2.26) into (2.21) it follows with equation (2.19) 

 3i gM M P M   , (2.27) 
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i.e., inertial and gravitational mass are identical.  

In general relativity the definition of inertial mass gives difficulties by virtue 

of the non-covariance of the energy-momentum of the gravitational field (see 

e.g. [Dem 82]). 

In particular, equation (2.26) can be rewritten 

  
42

2 4

0

4
3r T G dr P

c




  . (2.28) 

Equation (2.12) together with (2.10c) implies that there exists no spherically 

symmetric star without pressure. 

We get by a suitable linear combination of the equations (2.10) and by 

integration using the boundary conditions (2.14b) 

 
 

   

2

1/2

2 2 2
1 2

0 0

' ' '
2 3

1
24 .

2

r r

f f g h
r

f g hg fh

r L L dr kc r p r dr

 
  

 

    

 (2.29) 

Hence, we have for r   by virtue of (2.26), (2.17) and (2.24) 

  
2 2

3   g

k k
M P M

c c
 . (2.30) 

Put 

 
2

gkM
K

c
  (2.31) 

then, we have for r >> 0r  

 

2 2

2

1 2 , 1 2 ,

1 2 .

K K K K
f O g O

r r r r

K K
h O

r r

      
                    

  
        

 (2.32) 
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Equation (2.23) gives 

 
 

 
1/2 2 2

0

4
f g gf k

dr P
f cg fh




  . (2.33) 

The gravitational field in the exterior of the spherically symmetric star with 

pressure is given to the first order approximation by (2.32), i.e. by one mass, 

namely the gravitational mass gM . This is similar to Einstein’s general theory 

of relativity in contrast to Rosen’s bi-metric gravitation theory where the field is 

described by two mass parameters gM  and 'M  with 'gM M  for non-

vanishing pressure. 

2.3  Gravitational Field in the Exterior 

Let us study the gravitational field in the exterior of the star, i.e. r > 0r . We 

have from (2.10a), (2.10b) and (2.17) with the definitions (2.19) and (2.31) 

 
   

2 2
2

12 1/2 2 1/2 2

1 ' 2 1

2

d f f f f g
r L

dr fr r fg fh g fh

  
    
 
 

 (2.34a) 

 
   

2 2
2

22 1/2 2 1/2 2

1 ' 1 1

4

d f g f f g
r L

dr gr r fg fh g fh

  
    
 
 

 (2.34b) 

 
 

2

1/2

'
2

f h
r K

hg fh
  . (2.34c) 

Substituting  

/K r   

into equations (2.34) we get by elementary computations  

 

2 22

2

2 1 1
1

4 4

f f h g hd g

d f f f h g h

    

 

       
                   

 (2.35a) 
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2

2

2 1 1
1

2 2

g g f g g hd g g

d g f f g f g g h

     

 

    
         

    
 (2.35b)  

 

1/2

2
h h

g
h f

  
  

 
 (2.35c) 

where, the index   means the derivative relative to  . Put 

      exp , exp , expf x z g y z h z      . (2.36) 

Then, it follows from (2.35) 

        
2

2

2 1
1 exp 2 4exp 2

4
x y x y x x 


       (2.37a)  

       
2

2

2 1
1 exp exp

2
y y x y x x y y   


        (2.37b)  

  2exp / 2z y x    . (2.37c) 

The equations (2.35) and (2.32) imply for 0   

     3 2 2, , 2x O y O z O        . 

Substituting the approximations of x  and  up to the order four in   into 

the equations (2.37a) and (2.37b) we get by elementary calculations 

 3 41
2

6
x A   , 2 3 42

3
y A      (2.38a) 

where A  is an arbitrary parameter which must be fixed by the interior solution. 

Equation (2.37c) together with (2.38a) yields  

 
3 42

2
3

z A      . (2.38b) 

Finally, we obtain from (2.36) and (2.38) up to order four in K

r

: 

y
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  
2 3 4

13
1 2 2 2 2 3

6

K K K K
f A A

r r r r

      
            

      
 (2.39a) 

  
2 3 4

31
1 2 3 4 3

6

K K K K
g A A

r r r r

      
            

      
 (2.39b) 

  
2 3 4

1 2 2 2 2
K K K K

h A
r r r r

     
          

     
. (2.39c) 

Elementary computations give up to order five in K 

 

2 4 5

1 4 6 7

4 5

2 6 7

2 4 5

4 6 7

8 8 40 ,

4 24 ,

8 12 64 .G

K K K
L A

r r r

K K
L A

r r

K K K
L A

r r r

   

  

   

 (2.40) 

It is easily proved that the conservation law of energy-momentum (2.11) 

holds to the considered accuracy. 

Einstein’s theory gives in harmonic coordinates 

 

2 3 4
1 /

1 2 2 2 2
1 /

E

K r K K K K
f

K r r r r r

      
          

      
 (2.41a) 

 
 

2 3 4

2

1
1 2 3 4 5

1 /
E

K K K K
g

r r r rK r

     
          

     
 (2.41b) 

 

2 3 4
1 /

1 2 2 2 2
1 /

E

K r K K K K
h

K r r r r r

      
          

      
. (2.41c) 

The solution in the exterior of the star by Einstein’s theory does not contain a 

free parameter. The results of the two theories agree for f  and g  up to the 

order two and for h  up to the order three in the case 0A  and for 0A  the 

agreement of the solutions for f  and g  is up to the order three and for h  up 

to the order four. Hence, we have high agreement of the exterior solutions of 

both theories. 
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We will now give a lower limit for the pressure of stars on the assumption 

that 0/ rK  is small. Let us assume a non-negative density of the gravitational 

energy in the interior of the body, i.e. 

 
4

4
0T G   for 0rr   

then, it follows by the use of (2.26), (2.8) and (2.40) 

     
0

4 42 2

2 24 4

0

2 2 4 5

3 4
0 0 0

4 4
3

8 4 16 .
16

r

P r T G dr r T G dr
c c

c K K K
A

k r r r

 
 

   

 
   

 

 
 

Hence, we have by the use of (2.31) 

 

3 4

0 0 0

1
2 6

2 g

K K K P
A

r r r M

   
     

   
. (2.42) 

Inequality (2.42) gives for our Sun ( gM 3310993.1  , 106.96 10r cm   ) 

7/ 3.6 10P M 
    . 

Numerical methods are used to obtain the solution in the exterior of the star 

for large values of /K r  . For small   210
 
the solutions (2.38) and 

(2.39) are used. The system of the differential equations (2.37) is numerically 

solved by the use of Runge-Kutta methods for different values of the parameter 

A . There are two different types of solutions: (1) regular solutions, i.e. for all 

0   the functions f , g and h  exist and are positive. This is the case for all 

values 2.0A . (2) Singular solutions, i.e. it exists a positive value c depending 

on A such that ,f g and h  do not exist or vanish at c . Case (2) arises for 

small positive and all negative values of A . 

2.4  Non-Singular Solutions 

We will now study the solution in the vicinity of the singularity 
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c

f

f

 

 



, 

c

g

g

 

 



, 

c

h

h

 

 



 (2.43) 

with suitable constants  ,   and  . This gives near the singularity  <
c  

 
0

( )c

A
f

 



, 

0

( )c

B
g

 



,

0

( )c

C
h

 



 (2.44) 

with some constants 0A , 0B  and 0C . We get by the substitution of (2.43) and 

(2.44) into the equation (2.35c) 

 
 

1/2

0
0 /2

0

1
2

 

 
  

  
a

c c

C
B

A  



   
 

implying 

   / 2 1     ,  
1/2

0 0 02 /B C A  > 0 . (2.45a,b) 

It follows by the substitution of (2.43) and (2.44) into (2.35b) and the use of 

(2.45a) 

   <1 . (2.45c) 

We have from (2.35a) 

 2 21 1

4 4
      . (2.45d) 

The equations (2.45a) and (2.45d) yield by elementary calculations  

21 3 4 2 0       

Hence, we get 

 0 , 

21 3 4

2

 




 
 , 

21

2







 . (2.46) 

We obtain by (2.46) and (2.45c) 

 > 0  
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implying by the use of (2.46) and (2.45) 

 0 <  <1 . (2.47) 

Hence, we have 

 
  1 3 1

2

 




 
 , 

21

2







 , 0 <  <1  (2.48a) 

 

1/2

0
0

0 2

C
B

A

 
 

 
. (2.48b)  

Therefore, the constants   and   are always positive whereas   is 

positive for  < 3/1 , negative for  > 3/1  and zero for 3/1 . The radial 

velocity of light 
Lv  

near the critical value c  is given by 

  
1/21/2

10

0

0l c

Af
v c c

h C


 

  
     

   
 (2.49) 

for c   by the use of (2.48a). 

The solutions (2.44) cannot be continued to  >
c  by virtue of (2.48a). This 

is similar to Rosen’s bi-metric theory of gravitation  74Ros . Therefore, static 

spherically symmetrical stars with radius 0r < / cK  cr  cannot exist in this 

gravitational theory. 

We will now study a static spherically symmetric star with the radius 0 cr r . 

We get from (2.43), (2.44) and (2.48) for crr   

 

2
2

1/2 2 2

' 1 3 4
2

1

gkMf f
r

f cg fh

 



 



 

 

2
2

1/2 2 2

' 2
2

1

gkMf g
r

g cg fh







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 
2

1/2 2

'
2

gkMf h
r

h cg fh
 . 

Therefore, we have as crr   

 

2
2

1/2 2 2

' ' ' 1
2 3 8

1

gkMf f g h
r

f g h cg fh

 



   
   

 
. 

The left hand side of (2.29) is continuous, i.e. this equation gives 

02
2 4

4
2 2 2 2

0

1
8 8 24 24

1

r G
gkM kP kP

r T dr
c c c

 




   
      

  
 . 

Hence, we get by virtue of (2.19)       

    21 3 1 2gM P       . (2.50) 

The assumption 0P  implies by virtue of (2.48a) that the mass 0gM . 

Therefore, we have P > 0 . Relation (2.50) can be rewritten  

    2 21 1 4 7      M P P    < 0 , 

i.e. we obtain   

 M < P . (2.51) 

An equation of state with velocity of sound sc  has the form 

2

sp c  ,   2 1sc  . 

Hence, we get by integration the inequality 

P M  

which is in contradiction to (2.51). 

Therefore, every static spherically symmetric star has a radius 0r > / cK  , i.e. 

static spherically symmetric bodies have no singular solutions. 
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In empty space a singularity at a Euclidean distance from the centre can exist. 

The radius of this singular sphere is smaller than the radius of the body. 

Hence, there is no event horizon, i.e. static black holes do not exist. Escape of 

energy and information is possible, i.e. no contradiction to quantum mechanics 

(see [Pet 14b]). It is worth to mention that the singularity -if it exists- is at a 

Euclidean distance and is not a singularity of the coordinate system as by 

general relativity. 

2.5  Equations of Motion 

In this sub-chapter the equations of motion of a test particle in a spherically 

symmetric gravitational field are studied. 

Let us assume that the particle is moving in the plane given by the 

coordinates 1x  and 2x , i.e. / 2  . The velocity is given in spherical polar 

coordinates by 

 ,0,
dr d

dt dt

 
 
 

. (2.52) 

The equations (1.30) for a test particle can be written by the use of (2.4b)   

 

2 2

2

2 2

1 1 ' ' '
2

2

d dr dt f dr r g d h dt
r c

dt f dt d f dt g g dt h d



 

       
                   

 (2.53a) 

 
2

0
d r d dt

dt g dt d





 
 

 
 (2.53b) 

 
1

0
d dt

dt h d

 
 

 
. (2.53c) 

The relation (1.13) has the form 

 

2 2 22 2
2 1d c dr r d

c
dt h f dt g dt

      
       

     
. (2.54) 

Equation (2.53c) yields 
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dt

h
d



  (2.55) 

where   is a constant of integration. Equation (2.53b) implies with a further 

constant of integration 

 2 d dt
r g

dt d





 . (2.56) 

The last two relations give 

     

  
 

 

 

 

 
 (2.57) 

The equations (2.55) and (2.54) yield   

 

2 22 2

2

1 1
1

c dr r d

h h f dt g dt





     
       

     
. (2.58) 

Relation (2.57) corresponds to the second Kepler law. The equations (2.58) 

can be written 

 

2 2

2 2

2

1
1

dr f d f
r c

dt g dt h h





     
       

     
. (2.59) 

Inserting (2.57) into equation (2.59) we get  

 

2 2

2

2 2 2

1 1
1

dr fg f
c

dt r h h h



 

     
        

     
. (2.60) 

The equation (2.60) is a differential equation of first order for  tr . Knowing 

the solution of (2.60) we have a first order differential equation (2.57) for 

calculating  t . These two functions describe the motion of the test particle in 

the spherically symmetric gravitational field. We will now give the differential 

equation which describes the trajectory of the test body. We eliminate the time 

t  in the equations (2.57) and (2.59). Furthermore, we put  

 1/ r  . (2.61) 

It follows  
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2d g

dt h

 



  

and 

2 2

4 2 2

2 2

1
1

d fg f
c

dt h h h

 
 

 

      
                

. 

The last two equations give 

 

2 2

2 2

2 2

1d f f
c h

d g g

 


  

     
        

    
. (2.62) 

The differential equation (2.62) describes the inverse   of the distance r  as 

a function of the angle  . 

2.6  Redshift 

In this sub-chapter the redshift of spectral lines in the gravitational field is 

studied. It follows by virtue of (1.8) for an atom at rest in the gravitational field 

the following relation between proper -time and absolute time  

     
1/21/2

44 /d g dt dt h r     (2.63) 

where (2.4b) is used. This relation gives for the frequency  e r  of light 

emitted from an atom in the gravitational field at distance r  from the centre of 

the body 

     
1/2

0 /e r h r   (2.64a) 

where 0  is the frequency of light emitted from the same atom at infinity, i.e. 

neglecting gravitation. By virtue of Planck’s law E h  where h  is the Planck 

constant we get for the emitted energy  

     
1/2

0 /E r E h r . (2.64b) 

This relation follows also by the definition of the energy 
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4

k

k

dx
E g

d
   (2.65) 

and the use of (2.4b) and (2.63). Let us assume that the atom at distance 
1r  

emits light which moves in the gravitational field to the distance 
2r . By virtue 

of (1.30) the energy of light is not changing in the stationary, gravitational field, 

i.e. the energy (resp. frequency) of light received at 
2r  is 

     
1/2

1 0 1/r r h r  . (2.66) 

Light emitted from the same atom at distance 
2r  

has the frequency 

     
1/2

2 0 2/e r h r  . (2.67) 

Hence the last two relations imply 

         
1/2

2 1 1 2/ /e rr r h r h r   . (2.68) 

The redshift z  is then given by 

 
 

 

 

 

1/2

2 1

1 2

1 1 1
er

e r

r h r
z

r h r



 

 
       

 
. (2.69) 

By virtue of (2.39c) we get to first order approximation 

 2

1 2 1 2

1 1gkMK K
z

r r c r r

 
    

 
, (2.70) 

i.e. light emitted at 
1r  and received at 

2r >
1r  gives a redshift z  stated by (2.70) 

to the first order accuracy in agreement with the result of general relativity. 

The result (2.70) is by the authors of article          experimentally verified 

in the gravitational field of the Earth with an altitude of       by the use of the 

Mössbauer-effect to an accuracy of    . 
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2.7  Deflection of Light 

We consider a light ray coming from  1 1,r  , passing the nearest point  0 ,0r  

to the centre of the body and then moving to the observer at  2 2,r  . The 

equations which describe the motion of this light ray are given in the sub-

chapter 2.6. We start from the differential equation (2.62). For the nearest 

distance 0r  
of the light ray to the centre of the body we have  

0

0
d

d







 
 

 
 

implying by the use of (2.62) and (2.39) to first order approximation in K  

 
 

2

22
00

1 1
1 4

K

rr c



 

  
    

   
. (2.71a) 

Furthermore, we get for a light ray 0d   by virtue of (2.55) 

 
1

0

 . (2.71b) 

Substituting the last two relations into equation (2.62) we receive to the first 

order approximation 

 

2

2

2

0 0

1
1 4 4

d K
K

d r r


 



  
      

   
. (2.72) 

The solution of this differential equation with the initial condition

  0 00 1/ r  
 
can be given analytically. We have 

0

1/2

2

2 2

0 0 0

1
4 1 4

K K
d

r r r





   



  
        

  


 

Elementary integration and (2.61) give 

 0

0 0

/ 2 1 2 cos
K K

r r
r r


  

     
  

. (2.73) 
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Inserting the starting point and the end point of the light ray we have for 
1,2i   

 0

0 0

/ 2 1 2 cosi i

K K
r r

r r


  
     

  
. (2.74) 

Put for 1,2i   

 
2

i i


 

 
   

 
 (2.75a) 

where the upper (lower) sign stands for 1i   2i   then we get from (2.74) to 

first order in K  

 
0

0

2i

i

rK

r r
   . (2.75b) 

Let 
i  be the angle between the tangent at the light curve in the point  ,i ir   

and the 1x  -axis we have  

 
1 1

cos sin / sin cosi i
i i i i i

i i i i

dr dr
ctg

r d r d
    

 

   
     
   

. 

We have by virtue of (2.71) with (2.61) 

2 2

2

0 0

1 1 4 4i i
i

i i

dr r K K
r

d r r r

      
          
       

. 

The last two relations together with (2.75) imply by elementary computations 

0

2i

K
ctg

r
  . 

The deflection of light is given by 
1 2.      Hence, we have  
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     1 2 1 2

2 1

0

/ 1

4 .

tg tg tg tg tg

ctg ctg

K

r

     

 

     

 



 (2.76) 

The formula (2.76) gives the deflection of light and it is identical with the 

result of general relativity to the studied approximation.  

2.8  Perihelion Shift 

We consider now a test particle in the orbit of a spherically symmetric body 

with velocity 

      
  

  
 

 
   

  

  
 

 
   .   

Hence, we get from (2.58) and (2.39) to first order approximation to the 

accuracy of   
 

   : 

 
 

      
 

 
  

   

 
 

 
    

 

    
. (2.77) 

Here, the conservation law of energy of the test particle in the gravitational 

field is used to Newtonian accuracy and   is the classical energy satisfying 

           (2.78) 

We get from (2.62) by the use of (2.77), (2.78) and (2.39) to second order in 

  

  
  

  
 

 
        

 

 
 

 
 

 

                  (2.79) 

Put 

             
 

 
 

 
        

 

 
 

 
       

 

  
 

 

 
 

 
   . (2.80) 

The analytic solution of (2.79) with the initial condition          has the 

form 



Chapter 2  Static Spherical Symmetry 
 

http://www.sciencepublishinggroup.com  47 

         
              

                 
     

   
     

        (2.81) 

The solution is an elliptic curve, i.e., there exist two values         such 

that the right hand side of (2.79). Hence, 

                            

This yields 

                        (2.82) 

Equation (2.81) gives for a full period the angle 

   
  

  
               

 

 
 

 
    

Therefore, we get a perihelion shift 

                 
 

 
 

 
 (2.83) 

in the direction of the motion of the test particle. 

An elliptic curve with the semi-major axis  and the eccentricity  satisfies 

 

  
           

 

  
          

It follows by (2.82) 

 

       
 

 

      
 

 

      
                

 

 
 

 
   

Inserting this relation into (2.83) we have 

     
   

         
  (2.84) 

Hence, we get for the perihelion shift of a test particle in a spherically 

symmetric gravitational field the same result as by Einstein’s general theory of 

relativity.  
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2.9  Radar Time Delay 

We consider a light ray starting from an observer at        , passing the 

spherically symmetric body at        and reflected at a body with coordinates 
        and then travelling back to the observer on the same way. We will 

calculate the needed time and compare it with time when there is no 

gravitational field. 

We start from equation (2.60) for a light ray, i.e., the relations (2.71) hold. 

Hence, it follows to first order in   

 
  

  
 

 
    

  

 
 

 
      

 

  
 

  

      

 
   

Inserting (2.39) we get  

 
  

  
 

 
   

  

 
 

 
      

 

  
     

 

 
         

 

 
    

Therefore, the time for the propagation of a radio signal from        to 
         is  

          
 

 
      

 

 
 

  

  
         

where 

             
 

 
    

      
 

  
  

   

   

Elementary integration gives 

          
 

 
                                    .  

We get to first order in   

         
 

 
    

    
  

   
    

     
     

 
   

  

                                  
    

  
   

       

      
 

 
    

 

 

  
 

  
         

   

  
 . 
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The time of propagation from         to         is 

 

                                            

 
 

 
       

 

 
 

  
 

  
 

  
 

  
         

     

  
                  (2.86) 

The Euclidean distance between        and         is 

                                              

                              
 

 

    

     
       

   

where (2.75a) is used. Inserting (2.75b) it follows to first order in   

        
 

 

  
 

     
 

  

  
 

  

  
  

  
 

     
      

Hence, we get for the time delay    of the radio signal from         to 

        and back 

               
 

 
       

    

  
 . (2.87) 

Formula (2.87) is identical with the corresponding result of general relativity 

in the case when harmonic coordinates are used whereas when Schwarzschild 

coordinates are considered additional expressions appear (see e.g.          
          . In the theory of gravitation in flat space-time the distance is always 

the Euclidean one whereas in Einstein’s general theory of relativity we have a 

non-Euclidean geometry implying the mentioned difficulty. Experimental 

results confirm the result (2.87) to high accuracy (see e.g.            

These results about static spherically symmetric stars with the aid of theory 

of gravitation in flat space-time can be found in the articles                    

Summarizing, the results of flat space-time theory of gravitation for static 

spherically symmetric stars agree with the corresponding ones of general 

relativity to high accuracy by virtue of weak gravitational fields. 

2.10  Neutron Stars 

To calculate neutron stars we have to solve the differential equations (2.10) 

and (2.12) together with an equation of state (2.13). The boundary conditions 
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are given by (2.14). The boundary    of the neutron star follows from (2.15) and 

the mass is given by (2.19) together with (2.16). This problem seems to be not 

solvable analytically. Numerical methods must be used. The details of the 

numerical computations can be found in the paper         and only the results 

will be given. Several equations of state are considered. For        

          the table of          is used and then for                  the 

equations of state are continued by the tables of several authors The results of 

the flat space-time theory of gravitation are given in the following tables where 

the author of the continued table is stated. 

Table 1.          

           Geben Sie 

hier eine Formel ein. 

g/cm³ 

           

g/cm³ 
                           km 

0.859 0.085 0.765 0.772 1.32 1.05 10.62 

2.010 0.547 0.546 0.573 1.90 2.35 10.33 

3.160 1.268 0.474 0.513 2.23 2.69 9.58 

5.350 3.071 0.426 0.475 2.51 2.77 8.64 

Hence, we get with the equation of state of          a maximal mass of 

2.77   with a radius of         and a central density of                 . 

Table 2.          

           

g/cm³ 

            
g/cm³ 

                           km 

1.149 0.315 0.526 0.553 1.99 2.88 12.03 

2.132 0.974 4.425 0.469 2.54 3.61 11.33 

3.060 1.651 0.405 0.455 2.69 3.64 10.82 

4.547 2.785 0.399 0.452 2.73 3.53 10.36 

8.360 5.829 0.401 0.455 2.69 3.40 10.04 

This equation of state gives a maximal mass of a neutron star of 3.64   with 

a radius of 10.82 km and a central density of matter of           

   . 

In the paper          several equations of state are studied and the maximal 

mass of neutron stars is calculated by the use of Einstein’s general theory of 

relativity. Here, we will give for two equations of state the maximal mass, the 

radius and the density of matter in the centre of the star by flat space-time 



Chapter 2  Static Spherical Symmetry 
 

http://www.sciencepublishinggroup.com  51 

theory of gravitation. In brackets the corresponding values of general relativity 

are stated. 

                ,                       ,   

                                     .  

                                       ,  

                    .  

We see that although the radius of the neutron star has in both theories about 

the same value but the maximal mass can be greater in flat space-time theory of 

gravitation than that resulting by the use of general relativity. 

At last we will calculate neutron stars with a stiff equation of state, i.e. 

                      

where    and    are taken from the table          with 

                                        ,  

                                        .  

For         the equation of          is used again. We get the maximal 

mass, the approximate radius and the central density of matter 

          ,                                     .  

          ,                                  .  

Again we remark that the maximal mass of a neutron star can be greater than 

that received by general relativity. The maximal mass of a neutron star 

calculated by Einstein’s theory with a stiff equation of state is               .  

Summarizing, the mass of any star estimated by observations may suggest a 

black hole for this star by general relativity whereas the star can be a neutron 

star by the use of gravitation in flat space-time. 

Details about the numerical calculations and further results on neutron stars 

can be found in the paper         . Results on neutron stars based on Einstein’s 

theory can be found e.g. in the books          and         . Static neutron 

stars which have the form of a geoid are numerically computed and can be 

found in          based on the theory of gravitation in flat space-time. 
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