Chapter 2

Static Spherical Symmetry






In this chapter the theory of gravitation in flat space-time stated in the
previous chapter | is applied to static spherically symmetric problems with the
matter tensor of a perfect fluid.

It is useful to introduce spherical polar coordinates (r,9,¢) with

X' =rsingcosg, x? =rsingsing, x® =rcos9. (2.1)

We get by simple computations

=1, 1y =12, ny=r?sin® 3, n,, =—1, ;=0 (i#j). (2.2)
Then, we have
(—77)1/2 =r?sing.

The non-vanishing Christoffel symbols of the metric are

1 1 .
', =-rr?,=r%,==,1°,=r% ==,1,,=-rsin’ 9,
22 12 21 r 13 31 r 33 (23)
[?,, =—singcos, Iy, =T, =cotd
2.1 Field Equations, Equations of Motion and Energy-
Momentum
The potentials are written in the form
g = (r).g% g( ) g% (I’)
r?sin? g’ (2.4a)
g* =-h(r ) =0,(i= j)
It follows
g 1 g r? g r’sin® 9
1= Y92 = Y3 T
f g g (2.4b)
1 .
Qs :_Ev Oij =O,(I * J)
We get
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2 .- 1/2
(_G)uz: rsin g [ﬁj _ 1 25)

For a body at rest we have u' =u? =u®=0, i.e. it follows from relation (1.13)
ut =ch¥2. (2.6)
Then, the matter tensor of a perfect fluid (1.28) is given by
i _ 2 (i s
T(M) ;| =pc (i=j=123)
=—pc?,(i=j=4) (2.7)
=0.(i=])

We get from the equations (1.21a) and (1.9) by the use of (2.4) and (2.5) the
energy-momentum tensor of the gravitational field

i 1 .
T(6), = (L -L).(i= =1
1 o
:ﬁLi’ (I =1]= 2’3) (28)
1 . .
:16_K(|-1+|—2)1 (i=j=4)
=0, (i=j)
Here,
o £ (g (h? 1(f .g' hY
AR DR O G Sl
o4t (f-g)
L, = rzg(fh)ﬂz( f J (2.9b)
L=l +L,, (2.9¢)

where the prime ’ denotes differentiation with regard to the distance r. The field
equations (1.24) with A =0 give by the use of the covariant derivatives the
following three equations:
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14 f f'] 2 f f?-g> 1
[rzwf]‘rzwfzg——zhmz(ﬁ‘p)' (2109

, 2 2
1d{r2 f gj+12fmfg=£11L2+2KCZ(pp), (2.10b)

rrdr( g(fh)? g ) r’g(m)”? f°
1d f n
rzdr[rzg(fh)mh]:—ZKCz(p+3p). (2.10c)

The conservation law of the energy-momentum (1.25a) implies

d 4 , d
G, -n) -2, +16xe S p-o.
dr(2 L) rLZ P

It follows by multiplication with r3

%[rs(Lz—Li)]:rz(LiJrLQ)—lGKczr?’%p. (2.11)

The equations of motion (1.29a) yield

d 1(f" .9 1lh'
—p=—2| — 422 -
drp 2(f+ gjp+2 p. (2.12)

In addition to the equations (2.10), (2.11) and (2.12) we have an equation of
state

p=p(pr). (2.13)
The natural boundary conditions are for r — oo

f(r)—>1 g(r)—>1, h(r)->1 (2.14a)

and for r—0

. F 2

b e , f n
g(fh)l/Z f g(fh)ﬂz

——0
g(fh)lIZ h

P (2.14b)
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2.2 Gravitational and Inertial Mass

Let us assume a spherically symmetric star with radius r, . Then, the
boundary condition of the pressure has the form

p(r)=0. (2.15)

The mass and the pressure are defined by
M =4ﬂjr2p(r)dr, P =47r.|'r2p(r)dr . (2.16)
0 0

We get from (2.10c) with the aid of the boundary conditions (2.14) for r>r,

, f h _k(M+3P)
—=2_  — 7
g(f) =z (2.17)

r

where (1.14) is used. Equation (2.17) gives by integration and the boundary
conditions (2.14) for r>r,

k(M +3P
h(r)=1+2¥l+o(%) (2.18)
C r r

Equation (2.18) implies the gravitational mass

M, =M +3P (2.19)
The inertial mass M; is given by

Mic* =4z [(T(M)", +T(G)", )ridr (2.20)

It follows by the use of (2.7), (2.8) and (2.16)

T,

Mi:M_16—k r(L +L,)dr. (2.22)

0

We put by virtue of (2.14a) and r>>r,
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f=1-2— +O( jg 1- 2’B+O[i2j. (2.22)
r r r

Equation (2.10) gives by integration and the use of (2.14b)

g. r f (f_g)g 2I’ 5
—+2 dr =2xc”|r“(p—p)dr,
g _l.g(fh)l/Z f2 .([ (p )

,  f
g(fh)l/z

It follows for I — o0 with the aid of (2.18), (2.22) and (2.16)

r

9)g

T k
!g fh)m =K m-p)- g, (2.23)

The existence of the integral of equation (2.23) gives by using (2.18) and
(2.22) a=4 i.e., we have

f=1—2ﬁ+o(i2j, g=1-23+o(i2j. (2.24)
r r r r

We assume the natural boundary conditions as ' —o©
r’L, -0, r’L,—0, r’p—0.

Then, equation (2.11) implies by integration

;
r*(L-L)= jrz (L, + L, )dr —16xc?r*p(r)
0 r (2.25)
+48/<c2J.r2 p(r)dr
Hence, we get for I — 00 by the use of (2.18), (2.24), (2.15) and (2.16)
jr (L +L,)dr =—48P (2.26)
0
Substituting equation (2.26) into (2.21) it follows with equation (2.19)
M, =M +3P=M, (2.27)
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i.e., inertial and gravitational mass are identical.

In general relativity the definition of inertial mass gives difficulties by virtue
of the non-covariance of the energy-momentum of the gravitational field (see
e.g. [Dem 82]).

In particular, equation (2.26) can be rewritten
Arr ¢ 4
—?J'rZT (G),dr=3P, (2.28)
0

Equation (2.12) together with (2.10c) implies that there exists no spherically
symmetric star without pressure.

We get by a suitable linear combination of the equations (2.10) and by
integration using the boundary conditions (2.14b)

r? ;(f—+ 29—+3h—J

g fh 1/2 f g h
. r( ) : (2.29)
=—Ejr2(L1+ Lz)dr—24kc2‘|.r2p(r)dr.
0 0
Hence, we have for I' =0 by virtue of (2.26), (2.17) and (2.24)
k k
azc—z(M +3P)=C—2Mg. (2.30)
Put
kM
K=—2 (2.31)
c
then, we have for I'>>r,
2 2
f:l_zLo[(ﬁj j g:l_zLo[[ﬁ} J
r r r r
(2.32)

h=1+2§+o((g].
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Equation (2.23) gives

T f— k
| SEILILYY (2.33)
0

The gravitational field in the exterior of the spherically symmetric star with
pressure is given to the first order approximation by (2.32), i.e. by one mass,
namely the gravitational mass M. This is similar to Einstein’s general theory

of relativity in contrast to Rosen’s bi-metric gravitation theory where the field is
described by two mass parameters M, and M" with M, =M" for non-

vanishing pressure.

2.3 Gravitational Field in the Exterior

Let us study the gravitational field in the exterior of the star, i.e. r>r,. We
have from (2.10a), (2.10b) and (2.17) with the definitions (2.19) and (2.31)

1 d f f'] 2 f f?f-g® 1
[rz— J 9 _ 2L, (234)

r2dr| g(fh)? T ) rfg(m)? f?2 2

1d(, f g 1 f f*-g* 1
Sl 'S S A ——

, f h

rcF— — —_

Substituting
E=K/r

into equations (2.34) we get by elementary computations

d(f)_2f (o)) L), 1fh) a:h
dg(fj‘g?[l [f]} 4£f alh) g %9
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2
f h
d (9 :_% 1-919 (9%} 1%6 19:N (2.35b)
dél g & ff g 2f g 29 h
h h 12
3
= =2q| — 2.35¢
: g[ fJ (2.35¢)
where, the index & means the derivative relative to & . Put
f =exp(x+2z),9=exp(y+z),h=exp(-z). (2.36)

Then, it follows from (2.35)

X =5—22(1—exp(2(y—x)))+4exp(2y— x)—%(xg )2 (2.37a)

2
Y =—?(1—exp(y—x))exp(y—x)—%x§y§ +(y§)2 (2.37h)
z, =—2exp(y—x/2), (2.37c)
The equations (2.35) and (2.32) imply for £ —0
x=0(&%),y=0(&),z2=-2£+0(&*).

Substituting the approximations of X and y up to the order four in & into
the equations (2.37a) and (2.37b) we get by elementary calculations

Xz2A§3+%§“, yzéz—Aé3+§§4 (2.383)

where A is an arbitrary parameter which must be fixed by the interior solution.
Equation (2.37c) together with (2.38a) yields

2x-25- 28 AL (2.38b)

Finally, we obtain from (2.36) and (2.38) up to order four in K:

r
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LN S TR LR L yees

r r

g~1- 2% + 3(%}2 —(4+ A)[EJS + (%1 + SAJ(éjA (2.39b)

r

h=1+ 25+2[5j2+2(5j3+(2—A)($j4. (2.39¢)

r r r

Elementary computations give up to order five in K

K2 _K* K>
L1 z—SF—8r—6+40Ar—7,
4 5
L, ~ —4K—6 + 24AK—7, (2.40)
r r
K? K4 K>

~—8 120 1 64A—.
LG r.4 rG r.7

It is easily proved that the conservation law of energy-momentum (2.11)
holds to the considered accuracy.

Einstein’s theory gives in harmonic coordinates

2 3 4
g 1K/ z1—2£+2[5j —2(5j +2[5j (2.41a)
r

14K/ r r r
1 K (KY (KY _(KY
T SIIRLOE LY 3 R (S
(1+K/r) r r r r
2 3 4
he _L+KJr z1+2£+2(5) +2(5j +2(5j : (2.41c)
1-K/r r r r r

The solution in the exterior of the star by Einstein’s theory does not contain a
free parameter. The results of the two theories agree for f and g up to the
order two and for h up to the order three in the case A#0 and for A=0 the
agreement of the solutions for f and g is up to the order three and for h up

to the order four. Hence, we have high agreement of the exterior solutions of
both theories.
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We will now give a lower limit for the pressure of stars on the assumption
that K/r, is small. Let us assume a non-negative density of the gravitational
energy in the interior of the body, i.e.

—T(G)44 >0 for r<r,

then, it follows by the use of (2.26), (2.8) and (2.40)

0

3p =4—”Tr2(—T(G)“4)dr 24—”jr2(—T (G)44)dr

c? c?
o
2 2 4 5
S LSS Ty G
16k I r I

Hence, we have by the use of (2.31)

3 4
5+;[5] _2A(EJ 6P (2.42)
2 M

fo fo fo g
Inequality (2.42) gives for our Sun (M, ~1.993¢10%g, r, ~6.96#10°cm)
P, /Mg >3.6e10".

Numerical methods are used to obtain the solution in the exterior of the star
for large values of £=K/r. For small & (ﬁlO‘z) the solutions (2.38) and

(2.39) are used. The system of the differential equations (2.37) is humerically
solved by the use of Runge-Kutta methods for different values of the parameter
A . There are two different types of solutions: (1) regular solutions, i.e. for all

£>0 the functions f , g and h exist and are positive. This is the case for all
values A>0.2. (2) Singular solutions, i.e. it exists a positive value &_ depending
on Asuch that f, g and h do not exist or vanish at &, . Case (2) arises for
small positive and all negative values of A.

2.4 Non-Singular Solutions

We will now study the solution in the vicinity of the singularity
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o
§C_§

with suitable constants @ , g and y . This gives near the singularity & <¢,

A B .. C

f~ 1gz R ~ 0 5
(éc_g)a (gc_g) (fc_é)

with some constants A,, B, and C,. We get by the substitution of (2.43) and
(2.44) into the equation (2.35¢)

fea 9 B N
h

(2.43)

(2.44)

1/2
o C 1
£k =2B, (K?J (f _é)/ﬂ(o‘—a)/z
implying
B+(5-a)l2=1, §=28B,(C,/ A)"*>0. (2.45a,b)

It follows by the substitution of (2.43) and (2.44) into (2.35b) and the use of
(2.45a)

B-a<l. (2.45¢)
We have from (2.35a)
1, 1,
==8"-~a"-p5. 2.45d
a=35" - a’ - p (2:450)

The equations (2.45a) and (2.45d) yield by elementary calculations
1+38° 48 -2af =0
Hence, we get

14357 -48 . 1-p°
0, a= = . :
B#0, a 27 .0 2 (2.46)

We obtain by (2.46) and (2.45c)
B>0
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implying by the use of (2.46) and (2.45)
0<p<1. (2.47)

Hence, we have

(1-38)(1-8) . 1-F
a= 23 , 0= 25 ,0<fB <1 (2.48a)

1/2
C,) &
BO(EJ =2 (2.48b)

Therefore, the constants B and O are always positive whereas & is
positive for g <1/3, negative for B >1/3 and zero for £ =1/3. The radial
velocity of light v, near the critical value &, is given by

1/2 1/2
v,:c(%j zc(%j (&-&)" >0 (2.49)

for & — &, by the use of (2.48a).

The solutions (2.44) cannot be continued to &> ¢, by virtue of (2.48a). This
is similar to Rosen’s bi-metric theory of gravitation[Ros74]. Therefore, static

spherically symmetrical stars with radius r, <K /& =r, cannot exist in this
gravitational theory.

We will now study a static spherically symmetric star with the radius r, =r,.
We get from (2.43), (2.44) and (2.48) for r —

] kM 2_
FZ;ML—)—Z Zg 1+3p 24ﬂ
g(fhy” f c 1-p

2 f g' _ZkMg Zﬂz

r WE% Z 1-F
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f h' kM
rZWF - -2 CZ

9

Therefore, we have as r —

g b KM, 14 g2 —
2 f (f g+3h_]_)_8 gw'

PO A

The left hand side of (2.29) is continuous, i.e. this equation gives

kM 2 o G
—8—29—1+ﬂ 2ﬁ=81<'|'r2 -T* dr—24k—52—24k—?.
c 1-8 0 c c

Hence, we get by virtue of (2.19)
M, (1+8° - B)<3PB(1-2p). (2.50)

The assumption P =0 implies by virtue of (2.48a) that the mass M, =0.
Therefore, we have P >0 . Relation (2.50) can be rewritten

(M-P)(1+4° - B)<-P(1-48+75%) <0,
i.e. we obtain
M<P. (2.51)
An equation of state with velocity of sound ¢, has the form
p=c’p, c’<l.

Hence, we get by integration the inequality

P<M

which is in contradiction to (2.51).

Therefore, every static spherically symmetric star has a radius r,>K /&, i.e.
static spherically symmetric bodies have no singular solutions.

http://www.sciencepublishinggroup.com 39



A Theory of Gravitation in Flat Space-Time

In empty space a singularity at a Euclidean distance from the centre can exist.

The radius of this singular sphere is smaller than the radius of the body.
Hence, there is no event horizon, i.e. static black holes do not exist. Escape of
energy and information is possible, i.e. no contradiction to quantum mechanics
(see [Pet 14b]). It is worth to mention that the singularity -if it exists- is at a
Euclidean distance and is not a singularity of the coordinate system as by
general relativity.

2.5 Equations of Motion

In this sub-chapter the equations of motion of a test particle in a spherically
symmetric gravitational field are studied.

Let us assume that the particle is moving in the plane given by the
coordinates x' and x?, i.e. $=x/2. The velocity is given in spherical polar

coordinates by
dr . dg
_101_ . 252
(dt dtj (2.52)

The equations (1.30) for a test particle can be written by the use of (2.4b)

d(1drdt) 1 f'(dr)® r g’ d(p)z h' , ) dt
il it Pl ISR il —lo—_rZ2 (| = —c?|=
dt[fdtdrj 2[ fz(dtj+g[ rg](dt g (253

d(r®dedt
—| ————1|=0
dt( g dt dr} (2.53b)
d(1dt
The relation (1.13) has the form
(%) -5-3&) -5(&) est
dt h fldt gldt )’ '

Equation (2.53c) yields
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ﬁ:ah (2.55)
dr

where & is a constant of integration. Equation (2.53b) implies with a further
constant of integration

de dt
r’——=4g. 2.56
prarmat Y (2.56)
The last two relations give
249 _Bg
"ar T an (2.:57)
The equations (2.55) and (2.54) yield
2 2 2 2
[1-%)‘:—:1(£j +r—[d—¢) . (2.58)
a‘h)h fldt g Ldt
Relation (2.57) corresponds to the second Kepler law. The equations (2.58)
can be written
2 2
(o) (8] oo L)L 259
dt g\ dt a*h)h
Inserting (2.57) into equation (2.59) we get
Y 1(pY fg 2( 1)f
— | ===E| =4+c’1-— |—. 2.60
(dtj rz(aj h? a’h)h (2.60)

The equation (2.60) is a differential equation of first order for r(t). Knowing
the solution of (2.60) we have a first order differential equation (2.57) for
calculating ¢(t). These two functions describe the motion of the test particle in

the spherically symmetric gravitational field. We will now give the differential
equation which describes the trajectory of the test body. We eliminate the time
t in the equations (2.57) and (2.59). Furthermore, we put

p=1Ir, (2.61)

It follows
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d
_co_ﬁp
(04

29
t h

and

dp Y _ o[ (BY of9, o, L\
(Ej _p( (ajp e (1 azhjh]'

The last two equations give

2 2
do , f [ & ( 1j f
L =—p"—+c*| = | |h—-= |=. 2.62
Go) oGl 0ale ew
The differential equation (2.62) describes the inverse o of the distance I as
a function of the angle @ .

2.6 Redshift

In this sub-chapter the redshift of spectral lines in the gravitational field is
studied. It follows by virtue of (1.8) for an atom at rest in the gravitational field
the following relation between proper -time and absolute time

dz=(-g,)" dt=dt/(h(r))"” (2.63)

where (2.4b) is used. This relation gives for the frequency v, (r) of light

emitted from an atom in the gravitational field at distance r from the centre of
the body

v,(r)=v, ! (n(r))”* (2.64a)

e

where v, is the frequency of light emitted from the same atom at infinity, i.e.

neglecting gravitation. By virtue of Planck’s law E =hv where h is the Planck
constant we get for the emitted energy

E(r)=E,/(h(r))". (2.64b)

This relation follows also by the definition of the energy
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dx*
E= -0y - (2.65)

and the use of (2.4b) and (2.63). Let us assume that the atom at distance r;
emits light which moves in the gravitational field to the distance r, . By virtue

of (1.30) the energy of light is not changing in the stationary, gravitational field,
i.e. the energy (resp. frequency) of light received at r, is

v, (r)=v, /(h(r))" (2.66)
Light emitted from the same atom at distance r, has the frequency
v,(r,)=v, 1 (h(r,))”. (2.67)

Hence the last two relations imply

v, () /v, (1) =(h(r)/h(r,))" (2.68)
The redshift z is then given by
1/2
Zzi_lzve(rz)_lz(h(rl)J 1. (2.69)
A, v, () h(r,)
By virtue of (2.39c) we get to first order approximation
K K kM;(1 1
In———r— | ———|, (2.70)
L L C L h

i.e. light emitted at r, and received at r, >r, gives a redshift z stated by (2.70)
to the first order accuracy in agreement with the result of general relativity.

The result (2.70) is by the authors of article [Pau 65] experimentally verified
in the gravitational field of the Earth with an altitude of 20m by the use of the
M&ssbauer-effect to an accuracy of 1% .
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2.7 Deflection of Light

We consider a light ray coming from (r,,¢, ), passing the nearest point (r,,0)

to the centre of the body and then moving to the observer at (r,,¢,). The

equations which describe the motion of this light ray are given in the sub-
chapter 2.6. We start from the differential equation (2.62). For the nearest

distance I, of the light ray to the centre of the body we have

(d_pj 0
do ),

implying by the use of (2.62) and (2.39) to first order approximation in K

aY 1 K 1
(EJ ~m[1—4a+?) (2.71a)

Furthermore, we get for a light ray dz =0 by virtue of (2.55)

1o (2.71b)

a

Substituting the last two relations into equation (2.62) we receive to the first
order approximation

2
[d_p] =—p? +%[1—45+4Kp] : (2.72)
do fo fo

The solution of this differential equation with the initial condition
p(0)=p, =1/, can be given analytically. We have

-1/2
“ K 1 K
I I ro

Po 0 0

Elementary integration and (2.61) give

r=r,/ 25+ 1—25 cose |. (2.73)
r0 r-0
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Inserting the starting point and the end point of the light ray we have for

i=12
r=r, /[2%{1—2%}0%} (2.74)
Put for i=1,2
o= i(% H//ij (2.75a)

where the upper (lower) sign stands for i=1 (i = 2) then we get from (2.74) to
first order in K

K r
W, = 2r——7°. (2.75b)
0 i

Let », be the angle between the tangent at the light curve in the point (r,¢,)
and the x' -axis we have

1 dr, . 1dr .
ctgy; =| ——-cos(¢ ) —sing, |/| =—sing +cosg, |-
r, d r, d

We have by virtue of (2.71) with (2.61)

&)

The last two relations together with (2.75) imply by elementary computations
ctgy; = 125.
I’0

The deflection of light is given by Ay =y, —y,. Hence, we have
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Ay =tg(Ay)=(tgy, —t97,)/ (1+1t9.t97,)
~Ctgy, —Ctgy,
K

~4—.
T

(2.76)

The formula (2.76) gives the deflection of light and it is identical with the
result of general relativity to the studied approximation.

2.8 Perihelion Shift

We consider now a test particle in the orbit of a spherically symmetric body
with velocity

2 2
lv|? = (%) + (ri—(f) & c?.

Hence, we get from (2.58) and (2.39) to first order approximation to the
accuracy of 0 (ciz)

1 K ()% _ E
Z~1+20-(B) s1-220 2.77)
Here, the conservation law of energy of the test particle in the gravitational
field is used to Newtonian accuracy and E is the classical energy satisfying
E « Mgc?. (2.78)

We get from (2.62) by the use of (2.77), (2.78) and (2.39) to second order in
K

(Z_Z)Z =-p*+c? (%)2 (Mjcz +2Kp + 6(Kp)2). (2.79)

Put

a, =1 - 6(Kc)? (%)2, ay = Kc? (%)2 Jay, as = Mig(%)2 Jay. (2.80)

The analytic solution of (2.79) with the initial condition p(¢,) = p, has the
form
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(aZ+az)'"*

p = a, + (a? + as)'/?sin {ai/z (@ — o) + arcsin <ﬂ>} (2.81)

The solution is an elliptic curve, i.e., there exist two values p; > p, > 0 such
that the right hand side of (2.79). Hence,

(p1 = p)(p — pz) = —p* + 2a3p + a3 = 0.
This yields
p1+ p2 =20y, p1p; = 3. (2.82)

Equation (2.81) gives for a full period the angle

2
Ap =25~ 21 (1 +3K%2 () )
1

Therefore, we get a perihelion shift
2
— Aep — D7 — 2.2 (2
M = Ap — 21 = 6mK2c? ( ﬁ) (2.83)

in the direction of the motion of the test particle.

An elliptic curve with the semi-major axis aand the eccentricity esatisfies

1 1
—=a(l- —=a(1 )
o a(l—e), p a(l+e)
It follows by (2.82)
2 1 1
a(1-e2) ~ a(1-e) + a(1l+e)

= p1 + pp = 2a, ~ 2Kc? (%)2.

Inserting this relation into (2.83) we have

_ kMg
Y =61 Falloen) (2.84)
Hence, we get for the perihelion shift of a test particle in a spherically
symmetric gravitational field the same result as by Einstein’s general theory of
relativity.
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2.9 Radar Time Delay

We consider a light ray starting from an observer at (5, ¢,), passing the
spherically symmetric body at (7, 0) and reflected at a body with coordinates
(r1,¢1) and then travelling back to the observer on the same way. We will
calculate the needed time and compare it with time when there is no
gravitational field.

We start from equation (2.60) for a light ray, i.e., the relations (2.71) hold.
Hence, it follows to first order in K

() =~ (D]
Inserting (2.39) we get
(@) =) e (1+4)/(1+88) 42 (1-47)

Therefore, the time for the propagation of a radio signal from (ry,0) to
(ri, i) is

t(rom) = %f:;ir (1 + 45) /S(r)dr

where

1/2
S(r) = <r2 (1+4%) -7 (1+ 4%)) .
Elementary integration gives
t(ry,m) = %{S(ri) + 2K In ((ri + 2K + S(rl-))/(rO + 2K))}.

We get to first order in K

1 T — 19\ /2
t(ro,my) = ;{(Tiz —13)"* + 2K (1_0)

1+ 10
+2K In ((T‘i + (riz - r02)1/2) /r0>}
~2(n —%:—€+2K+ 2Klnzr—roi).
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The time of propagation from (ry, 1) to (3, @,) is

t(ry,1m2) = t(ry, 1) + t(1,72)

~ %(n +r—2(B-B) 42K (24 In ‘”“2)). (2.86)

o ré
The Euclidean distance between (14, @;)and (1, @,) is
R = {(rycos@, — 1,c050,)? + (r15ing, — rysing,)?}1/?

=1 t+T— ESLE (Y1 + )2

21141,

where (2.75a) is used. Inserting (2.75b) it follows to first order in K

~ _1m (pon)__m%
R~m+n 21141, (r1 + rz) T 1, +4K.
Hence, we get for the time delay At of the radio signal from (r,¢,) to
(12, @) and back

At =2(t(ry,my) - 2) ~ 4K In" (2.87)
Formula (2.87) is identical with the corresponding result of general relativity
in the case when harmonic coordinates are used whereas when Schwarzschild
coordinates are considered additional expressions appear (see e.g. [Wei 72],
[Log 86]) . In the theory of gravitation in flat space-time the distance is always
the Euclidean one whereas in Einstein’s general theory of relativity we have a
non-Euclidean geometry implying the mentioned difficulty. Experimental
results confirm the result (2.87) to high accuracy (see e.g. [Sha 71]).

These results about static spherically symmetric stars with the aid of theory
of gravitation in flat space-time can be found in the articles [Pet 82, Pet 88].

Summarizing, the results of flat space-time theory of gravitation for static
spherically symmetric stars agree with the corresponding ones of general
relativity to high accuracy by virtue of weak gravitational fields.

2.10 Neutron Stars

To calculate neutron stars we have to solve the differential equations (2.10)
and (2.12) together with an equation of state (2.13). The boundary conditions
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are given by (2.14). The boundary r, of the neutron star follows from (2.15) and
the mass is given by (2.19) together with (2.16). This problem seems to be not
solvable analytically. Numerical methods must be used. The details of the
numerical computations can be found in the paper [Sta 84]and only the results
will be given. Several equations of state are considered. For p(r) <5-
10* g/cm3 the table of [Bay 71] is used and then for p(r) > 5- 10 g/cm? the
equations of state are continued by the tables of several authors The results of
the flat space-time theory of gravitation are given in the following tables where
the author of the continued table is stated.

Table 1. [Bet 74]

p(0) - 10715 Geben Sie

L 10-1

hier eine/FormeI ein. p(;/gm130 fre) g(ro) h(ry) My/Mg 7o km
glcm=3
0.859 0.085 0.765 0.772 1.32 1.05 10.62
2.010 0.547 0.546 0.573 1.90 2.35 10.33
3.160 1.268 0.474 0.513 2.23 2.69 9.58
5.350 3.071 0.426 0.475 2.51 2.77 8.64

Hence, we get with the equation of state of [Bet 74] a maximal mass of
2.77M with a radius of 8.64 km and a central density of 5.350 - 10*° g/cm?.

Table 2. [Wal 74]

2(0) - 10715 p(0) - 1015

glem= glem= f@ro) g@y) h(ry) Mg/MO To km
1.149 0.315 0.526 0.553 1.99 2.88 12.03
2.132 0.974 4.425 0.469 2.54 3.61 11.33
3.060 1.651 0.405 0.455 2.69 3.64 10.82
4.547 2.785 0.399 0.452 2.73 3.53 10.36
8.360 5.829 0.401 0.455 2.69 3.40 10.04

This equation of state gives a maximal mass of a neutron star of 3.64M with
a radius of 10.82 km and a central density of matter of 3.06 - 10*° 65143.

In the paper [Hae 81] several equations of state are studied and the maximal
mass of neutron stars is calculated by the use of Einstein’s general theory of
relativity. Here, we will give for two equations of state the maximal mass, the
radius and the density of matter in the centre of the star by flat space-time
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theory of gravitation. In brackets the corresponding values of general relativity
are stated.

M = 4.14Mg(= 2.5Mg), 1y = 12.06 km (= 12.1 km),
p(0) = 2.664 - 10> g/cm?3 (= 2.66 - 10'° g/cm?).
M = 5.13Mg (= 3.1Mg), 1, = 14.83 km (= 12.8 km),
p(0) = 1.502- 10> g/cm?3.

We see that although the radius of the neutron star has in both theories about
the same value but the maximal mass can be greater in flat space-time theory of
gravitation than that resulting by the use of general relativity.

At last we will calculate neutron stars with a stiff equation of state, i.e.
p=p—pitp (=12)
where p; and p; are taken from the table [Bay 71] with
p; =5.09-10" g/cm3, p, =822-10'%2 g/cm?3,
py =2.00-10* g/cm3, p, = 1.44-10'2 g/cm3.

For p(r) < p; the equation of [Bay 71] is used again. We get the maximal
mass, the approximate radius and the central density of matter

M; =5.09 Mg, 119 = 13.42 km, p;(0) = 1.54-10%° g/cm?3.
M, = 8.32 - Mg, 159 = 21.06 km, p,(0) = 0.57 - 10> g /cm3.

Again we remark that the maximal mass of a neutron star can be greater than
that received by general relativity. The maximal mass of a neutron star
calculated by Einstein’s theory with a stiff equation of state is 3.2 - Mg[Rho 74].

Summarizing, the mass of any star estimated by observations may suggest a
black hole for this star by general relativity whereas the star can be a neutron
star by the use of gravitation in flat space-time.

Details about the numerical calculations and further results on neutron stars
can be found in the paper [Sta 84]. Results on neutron stars based on Einstein’s
theory can be found e.g. in the books [Dem 85] and [Sha 83]. Static neutron
stars which have the form of a geoid are numerically computed and can be
found in [Neu 87] based on the theory of gravitation in flat space-time.
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