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On Some Zweier I-Convergent
Sequence Spaces Defined by a
Modulus Function

“Good mathematicians see analogies between theorems or theories, the very best ones see analogies between
analogies”- Banach.





Chapter 5 On Some Zweier I-Convergent Sequence Spaces Defined by a Modulus Function

5.1 Introduction

Ruckle[62-64] used the idea of a modulus function f to construct the
sequence space

X(f) = {x = (xk) :
∞∑
k=1

f(|xk|) <∞}.

This space is an FK space, and Ruckle[62] proved that the intersection of
all suchX(f) spaces is φ, the space of all finite sequences. The spaceX(f)

is closely related to the space `1 which is an X(f) space with f(x) = x for
all real x ≥ 0. Thus Ruckle[62-64] proved that, for any modulus f ,

X(f) ⊂ `1 and X(f)α = `∞

where

X(f)α = {y = (yk) ∈ ω :
∞∑
k=1

f(|ykxk|) <∞}

The space X(f) is a Banach space with respect to the norm

||x|| =
∞∑
k=1

f(|xk|) <∞.(See[62]).

Spaces of the type X(f) are a special case of the spaces structured by
Gramsch in[16]. From the point of view of local convexity, spaces of the
type X(f) are quite pathological. Therefore symmetric sequence spaces,
which are locally convex have been frequently studied by Garling[14-15],
Köthe[50], Kolk[51-52] and Ruckle[29-31].

In this chapter we introduce the following class of sequence spaces.
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ZI(f) = {(xk) ∈ ω : there is L ∈ C such that

for ε > 0, {k ∈ N : f(|xk − L|) ≥ ε} ∈ I},

ZI0 (f) = {(xk) ∈ ω : for a given ε > 0, {k ∈ N : f(|xk|) ≥ ε} ∈ I},

ZI∞(f) = {(xk) ∈ ω : {k ∈ N : f(|xk|) ≥M} ∈ I, for each fixed M>0}.

We also denote by

mI
Z(f) = Z∞(f) ∩ ZI(f)

and
mI
Z0

(f) = Z∞(f) ∩ ZI0 (f).

5.2 Main Results

Theorem 5.2.1. For any modulus function f , the classes of sequences
ZI(f),ZI0 (f),mI

Z(f) and mI
Z0

(f) are linear spaces.

Proof. We shall prove the result for the space ZI(f). The proof for the
other spaces will follow similarly. Let (xk), (yk) ∈ ZI(f) and let α, β be
scalars. Then

I − lim f(|xk − L1|) = 0, for someL1 ∈ C ;

I − lim f(|yk − L2|) = 0, for someL2 ∈ C ;

That is for a given ε > 0, we have

A1 = {k ∈ N : f(|xk − L1|) >
ε

2
} ∈ I, [5.1]

A2 = {k ∈ N : f(|yk − L2|) >
ε

2
} ∈ I. [5.2]
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Since f is a modulus function, we have

f(|(αxk + βyk)− (αL1 + βL2)|) ≤ f(|α||xk − L1|) + f(|β||yk − L2|)

≤ f(|xk − L1|) + f(|yk − L2|)

Now, by [5.1] and [5.2], {k ∈ N: f(|(αxk + βyk)− (αL1 + βL2)|) > ε}
⊂ A1 ∪ A2. Therefore (αxk + βyk) ∈ ZI(f). Hence ZI(f) is a linear
space.

We state the following result without proof in view of Theorem 5.2.1.

Theorem 5.2.2. The spacesmI
Z(f) andmI

Z0
(f) are normed linear spaces,

normed by
||xk||∗ = sup

k
f(|xk|). [5.3]

Theorem 5.2.3. A sequence x = (xk) ∈ mI
Z(f) I-converges if and only

if for every ε > 0 there exists Nε ∈ N such that

{k ∈ N : f(|xk − xNε |) < ε} ∈ mI
Z(f). [5.4]

Proof. Suppose that L = I − limx. Then

Bε = {k ∈ N : |xk − L| <
ε

2
} ∈ mI

Z(f). For all ε > 0.

Fix an Nε ∈ Bε. Then we have

|xNε − xk| ≤ |xNε − L|+ |L− xk| <
ε

2
+
ε

2
= ε

which holds for all k ∈ Bε. Hence {k ∈ N : f(|xk−xNε|) < ε} ∈ mI
Z(f).

Conversely, suppose that {k ∈ N : f(|xk − xNε|) < ε} ∈ mI
Z(f). That

is {k ∈ N : (|xk − xNε |) < ε} ∈ mI
Z(f) for all ε > 0. Then the set

Cε = {k ∈ N : xk ∈ [xNε − ε, xNε + ε]} ∈ mI
Z(f) for all ε > 0.
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Let Jε = [xNε− ε, xNε + ε]. If we fix an ε > 0 then we have Cε ∈ mI
Z(f)

as well as C ε
2
∈ mI

Z(f). Hence Cε ∩ C ε
2
∈ mI

Z(f). This implies that

Jε ∩ J ε
2
6= φ

that is
{k ∈ N : xk ∈ J} ∈ mI

Z(f)

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤ 1
2
diamIk−1 for (k=2,3,4,.....) and

{k ∈ N : xk ∈ Ik} ∈ mI
Z(f) for (k=1,2,3,4,......). Then there exists a

ξ ∈ ∩Ik where k ∈ N such that ξ = I−limx. So that f(ξ) = I−lim f(x),
that is L = I − lim f(x).

Theorem 5.2.4. Let f and g be modulus functions that satisfy the
42-condition. If X is any of the spaces ZI ,ZI0 ,mI

Z and mI
Z0

etc, then the
following assertions hold.
(a) X(g) ⊆ X(f.g),
(b) X(f) ∩X(g) ⊆ X(f + g).

Proof. (a) Let (xk) ∈ ZI0 (g). Then

I − lim
k
g(|xk|) = 0. [5.5]

Let ε > 0 and choose δ with 0 < δ < 1 such that f(t) < ε for
0 < t < δ. Write yk = g(|xk|) and consider lim

k
f(yk) = lim

k
f(yk)yk<δ +

lim
k
f(yk)yk>δ. We have

lim
k
f(yk) ≤ f(2) lim

k
(yk) [5.6]
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For yk > δ, we have yk < yk
δ
< 1 + yk

δ
. Since f is non-decreasing, it

follows that

f(yk) < f(1 +
yk
δ

) <
1

2
f(2) +

1

2
f(

2yk
δ

)

Since f satisfies the42-condition, we have

f(yk) <
1

2
K
yk
δ
f(2) +

1

2
K
yk
δ
f(2) = K

yk
δ
f(2)

Hence
lim
k
f(yk) ≤ max(1, K)δ−1f(2) lim

k
(yk). [5.7]

From [5.5], [5.6] and [5.7] we have (xk) ∈ ZI0 (f.g).

Thus ZI0 (g) ⊆ ZI0 (f.g). The other cases can be proved similarly.

(b) Let (xk) ∈ ZI0 (f) ∩ ZI0 (g). Then

I − lim
k
f(|xk|) = 0 and I − lim

k
g(|xk|) = 0

The rest of the proof follows from the following equality

lim
k

(f + g)(|xk|) = lim
k
f(|xk|) + lim

k
g(|xk|).

Corollary 5.2.5. X ⊆ X(f) for X =ZI ,ZI0 ,mI
Z and mI

Z0
.

Theorem 5.2.6. The spaces ZI0 (f) and mI
Z0

(f) are solid and monotone.

Proof. We shall prove the result for ZI0 (f). Let (xk) ∈ ZI0 (f). Then

I − lim
k
f(|xk|) = 0. [5.8]

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from [5.8] and the following inequality

f(|αkxk|) ≤ |αk|f(|xk|) ≤ f(|xk|) for all k ∈ N.
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That the space ZI0 (f) is monotone follows from the Lemma 5.1.1. For
mI
Z0

(f) the result can be proved similarly.

Theorem 5.2.7. The spaces ZI(f) and mI
Z(f) are neither solid nor

monotone in general .

Proof. Here we give a counter example. Let I = Iδ and f(x) = x2 for
all x ∈ [0,∞). Consider the K-step space XK(f) of X defined as follows.

Let (xk) ∈ X and let (yk) ∈ XK be such that

(yk) =

{
(xk), if k is even,

0, otherwise.

Consider the sequence (xk) defined by (xk) = 1 for all k ∈ N. Then
(xk) ∈ ZI(f) but its K-stepspace preimage does not belong to ZI(f).

Thus ZI(f) is not monotone. Hence ZI(f) is not solid.

Theorem 5.2.8. The spaces ZI(f) and ZI0 (f) are sequence algebras.

Proof. We prove that ZI0 (f) is a sequence algebra. Let
(xk), (yk) ∈ ZI0 (f). Then

I − lim f(|xk|) = 0

and

I − lim f(|yk|) = 0

Then we have

I − lim f(|(xk.yk)|) = 0

Thus (xk.yk) ∈ ZI0 (f) is a sequence algebra. For the space ZI0 (f), the
result can be proved similarly.
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Theorem 5.2.9. The spaces ZI(f) and ZI0 (f) are not convergence free
in general.

Proof. Here we give a counter example. Let I = If and f(x) = x3 for
all x ∈ [0,∞). Consider the sequence (xk) and (yk) defined by

xk =
1

k
and yk = k for all k ∈ N

Then (xk) ∈ ZI(f) and ZI0 (f), but (yk) /∈ ZI(f) and ZI0 (f). Hence the
spaces ZI0 (f) and ZI0 (f) are not convergence free.

Theorem 5.2.10. If I is not maximal and I 6= If , then the spaces ZI(f)

and ZI0 (f) are not symmetric.

Proof. Let A ∈ I be infinite and f(x) = x for all x ∈ [0,∞). If

xk =

{
1, for k ∈ A,
0, otherwise.

Then by lemma 1.22 (xk) ∈ ZI0 (f) ⊂ ZI(f). Let K ⊂ N be such that
K /∈ I and N − K /∈ I . Let φ : K → A and ψ : N − K → N − A be
bijections, then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(k) /∈ ZI(f) and xπ(k) /∈ ZI0 (f). HenceZI(f)

and ZI0 (f) are not symmetric.

Theorem 5.2.11. Let f be a modulus function. Then ZI0 (f) ⊂ ZI(f) ⊂
ZI∞(f).

Proof. Let (xk) ∈ ZI(f). Then there exists L ∈ C such that

I − lim f(|xk − L|) = 0
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We have f(|xk|) ≤ 1
2
f(|xk − L|) + f 1

2
(|L|). Taking the supremum over

k on both sides we get (xk) ∈ ZI∞(f). The inclusion ZI0 (f) ⊂ ZI(f) is
obvious.

Theorem 5.2.12. The function ~ : mI
Z(f)→ R is the Lipschitz function,

where mI
Z(f) = ZI∞(f) ∩ ZI(f), and hence uniformly continuous.

Proof. Let x, y ∈ mI
Z(f), x 6= y. Then the sets

Ax = {k ∈ N : |xk − ~(x)| ≥ ||x− y||∗} ∈ I,

Ay = {k ∈ N : |yk − ~(y)| ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |xk − ~(x)| < ||x− y||∗} ∈ mI
Z(f),

By = {k ∈ N : |yk − ~(y)| < ||x− y||∗} ∈ mI
Z(f).

Hence also B = Bx ∩By ∈ mI
Z(f), so that B 6= φ. Now taking k in B,

|~(x)− ~(y)| ≤ |~(x)− xk|+ |xk − yk|+ |yk − ~(y)| ≤ 3||x− y||∗.

Thus ~ is a Lipschitz function. For the space mI
Z0

(f) the result can be
proved similarly.

Theorem 5.2.13. If x, y ∈ mI
Z(f), then (x.y) ∈ mI

Z(f) and
~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {k ∈ N : |xk − ~(x)| < ε} ∈ mI
Z(f),

Bx = {k ∈ N : |yk − ~(y)| < ε} ∈ mI
Z(f).
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Now,

|xkyk − ~(x)~(y)| = |xkyk − xk~(y) + xk~(y)− ~(x)~(y)|

≤ |xk||yk − ~(y)|+ |~(y)||xk − ~(x)| [5.9]

As mI
Z(f) ⊆ ZI∞(f), there exists an M ∈ R such that |xk| < M and

|~(y)| < M .

Using eqn [5.9] we get

|xkyk − ~(x)~(y)| ≤Mε+Mε = 2Mε

For all k ∈ Bx ∩ By ∈ mI(f). Hence (x.y) ∈ mI
Z(f) and ~(xy) =

~(x)~(y). For the space mI
Z0

(f) the result can be proved similarly.
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