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Preface 

The decades of the 1970s and 1980s of the last century were marked by the 

emergence and rapid development of a new scientific direction in turbine 

manufacturing – optimal design. A summary of the approaches, models, and 

optimization methods for axial turbine flow path is presented in the monographs 

[13–15 and 24]. 

It should be noted that work on the optimal design of the flow path of axial 

turbines and the results obtained not only have not lost their relevance, but are 

now widely developing. Evidence of this is the large number of publications on 

the topic and their steady growth. Optimization of the turbomachine flow path is 

a priority area of research and development of leading companies and universities. 

Without the use of optimization, it is impossible nowadays to talk about progress 

made in the creation of high efficiency flow paths of turbomachines. 

It is worth noting that the widespread use in power engineering of modern 

achievements of hydro-aerodynamics, the theory of thermal processes, dynamics 

and strength of machines, materials science, and automatic control theory, is 

significantly expanding the range of tasks confronting the designer and greatly 

complicating them. 

The proposed book comprehensively addresses the problem of turbomachine 

optimization, starting with the fundamentals of the optimization theory of the 

axial turbine flow paths, its development, and ending with specific examples of 

the optimal design of cylinder axial turbines. 

It should be noted that the mutual influence of designed objects of turbine 

installations and the many design parameters of each object, which the product’s 

effectiveness depends on, is putting the task of multiparameter optimization on 

the agenda. 
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For turbines with extractions of working media for various needs, efficiency 

ceases to be the sole criterion of optimality. It is necessary to enable in the 

optimization process such important parameters as power supply.  The task of 

optimal design of turbine has become multifaceted. 

It should also be stressed that often the turbo installation mode of operation is 

far from nominal. So taking into account the operating mode in the optimization 

can significantly improve the efficiency of the turbine. 

In the book, along with the widely used methods of nonlinear programming, 

taking into account the complexity of the task and the many varied parameters, 

the use of the theory of planning the experiment coupled with the LP sequence to 

find the optimal solution is discussed. 

The first chapter of the book deals with general issues of the optimal design of 

complex technical systems and, in particular, the problem of optimization of 

turbomachines, using one of the approaches to the design of turbo installations – 

a block-hierarchical view of the design process. With this priority is given to flow 

path optimization of axial turbines. The task of object design and using 

mathematical models is formulated. A brief overview of optimization techniques, 

including the optimization method for turbines considering mode of operation is 

given. 

The second chapter is devoted to the mathematical modeling of flow path 

elements of turbomachines. Special attention is paid to aerodynamic models of 

flow through the flow path, including flow through axial cascades of turbine 

profiles, one-dimensional and axial-symmetric flow through the turbine stage and 

multistage turbomachine cylinders; geometric and strength models; a model for 

creating a thermal scheme for a gas turbines and the computation of system 

equations is set out. 

The results of the numerous calculations are compared with experimental data. 



◆◇     Preface     ◇◆ 
 

http://www.sciencepublishinggroup.com V 

Chapter 3 examines one of the most important tasks in designing turbines – 

determination of the optimal number of stages and distribution between them of 

the heat drop. 

The problem of parameter optimization of the axial turbine stage along the 

radius considering the slope and curvature of the working medium stream lines is 

the subject of the fourth chapter of the book. It assesses the impact of leaks on the 

optimal spin laws of the guides and working wheels of the axial turbine stages in a 

wide range of changes of bushing ratios, and the results of the effect of tangential 

slope on characteristics of axial turbine stage are presented. 

Chapter 5 is devoted to optimal profile creation, starting from the choice of 

the main parameters and the consideration of their formation methods. The 

methods for optimal profile creation using geometrical quality criteria and 

minimum profile losses are described, and the results of experimental research of 

initial and optimal profiles are given. 

The important problem of turbine blade shape optimization, using 

aerodynamic computation is covered in Chapter 6 of the book. The presentation 

of blade geometry, file formats for storage blades and grids, building up the 

lateral surfaces of blades and the three-dimensional parametric model of turbine 

cascades are discussed, an algorithm of spatial aerodynamic optimization of axial 

turbine cascades and the influence of simple and complex slopes on the flow in 

the ring cascade is described, and the reasons for increasing the efficiency of the 

optimized turbine cascade are analyzed. 

The seventh chapter sums up the results of the developed optimization theory 

by applying it to the optimum design of flow parts of powerful modern steam 

turbine cylinders at nominal mode of operation and flow path of gas turbine 

installations, taking into account their operational mode. 

It should be noted that in the book attention is paid to the verification of 

developed mathematical models of flow path elements of axial turbines as well as 

to the results offered by methods and algorithms for optimization. A comparison 
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of the results of calculations and optimization with experimental data of the 

modeling stages and with two stage air turbines as well as with the results of full-

scale experimental research of powerful steam turbine in a wide range of modes 

of operation in a thermal power plant is performed. 

The comparison of the results of experimental and calculated research data 

have convincingly confirmed that optimization calculations and designed and 

programmatically implemented mathematical models have a high degree of 

accuracy and adequately simulate the physical processes flow of the working 

medium in an axial turbine flow path. 

The book convincingly shows that at the present stage of design and 

manufacturing of turbines (characterized by decades of accumulated positive 

experiences of creating high-performance flow paths) their further improvement 

is possible only using the most modern methods and software systems, capable of 

solving tasks of a multilevel object-oriented multicriterion and multiparameter 

optimization of the flow paths of axial turbines, taking into account their 

operational mode. 

The book is intended for researchers and experts in design, calculation and 

research on turbomachines. It is useful for University faculty members, post-

graduate students and senior undergraduate students of Technical Universities. 

Authors express their sincere thanks to Director Engineering Institute Prof. 

Serbin S. I. for the kindly offered possibility of carrying out of CFD-calculations 

with usage ANSYS CFX at National Shipbuilding University named after Makarov. 

The authors  also express gratitude to the junior scientist of National Technical 

University “Kharkiv Politecnical Institute” Naumenko Svetlana P. for her 

assistance on the final stage of work on the manuscript. 
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Key Symbols 

a – local sound velocity, m/g; inter-blade channel throat, mm; 

B – blade’s profile axial chord, mm; 

b – blade’s profile chord, mm; 

c, cr, cu, cz – absolute velocity and its components in the cylindrical 

coordinate system, m/s; 

C0 – velocity, equivalent to stage or module heat drop, m/s; 

Cp – specific heat capacity at constant pressure, J/(kggrad); pressure 

coefficient; 

Cv – specific heat capacity at constant volume, J/(kggrad); 

D (or d) – stage (or annular cascade) diameter, mm; 

F – stage (or channel) cross-section area, m
2
; 

G – mass flow rate, kg/s; 

H – specific rothalpy (Bernoully constant) in the relative frame; turbine heat 

drop, J/kg; 

Lu – specific peripheral work, J/kg; 

h – specific kinetic energy loss, J/kg; 

i– specific enthalpy, J/kg; incidence angle, grad; 

k – isentropic factor; 

ℓ – blade height, mm; 

M – Mach number; 

N – stage power, W; 

Nit – a predetermined number of iterations; 
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n– number of stages in the module; rotation speed, rev/min; 

P – pressure, MPa; 

R (or ) – reaction degree by static stage input parameters; 

R  (or ) – reaction degree by total stage input parameters; 

Re – Reynolds number; 

r – stage radius, mm; profile’s edge radius, mm; 

r, , z – cylindrical coordinate system’s axes; 

S – specific entropy, J/(kggrad); axial distance, m; 

s – length (along a streamline), mm; 

T – temperature, K; 

t – cascade’s pitch, mm; 

u – rotor annular velocity, m/s; 

w – fluid velocity in the relative frame, m/s; 

z– number of blades; last turbine’s stage; 

n – heat recovery factor of the n-stage module; 

,  – angles between c, w and rotation direction u; 180   , grad; 

г – profile’s metal angle, grad; 

s – profile’s stagger angle, grad;b = 90° – s; 

 – angle in the meridional plane, grad; 

 (or ) – flow turning angle in the cascade, grad; 

 – loss factor, relative to dynamic head at the cascade outlet; 

i – stage’s internal efficiency; 

u – stage’s peripheral efficiency; 
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 – penalty coefficient; Lagrange’s coefficient; 

 – crown mass exchange coefficient; exit velocity utilization factor; 

 – velocities ratio, u/C0; 

 – relative (to stage’s heat drop) losses;  

 – density, kg/m
3
; 

 – entropy factor; 

,  – velocity coefficients of stator and rotor blades; 

 – blockage factor; 

 – stream function; 


*
 – stream function at the tip; 

 – angular rotation speed, s
–1

; 

 – stream line curvature, 1/м. 
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Indexes and Other Signs 

0, 1, 2 – sections numbers at stage inlet, between vanes and at outlet; 

abs – absolute; 

add – additional; 

as – additional stream; 

bh – balance boles; 

cons – constructive; 

cr – critical; 

cyl – cylinder; 

def – defined; 

e (or eff) – effective; 

g (or s) – guide (stator) blade; 

h (or r) – hub (root) radius; 

i – stage number; 

in – input; 

j – section number; 

l (or leak) – leakage; 

ll – local losses; 

m – module; at mean radius; 

max – maximal; 

min – minimal; 

mix – mixture; 
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mod – module’s; 

ms – main stream; 

n – nominal; 

nom – nominal; 

opt – optimal; 

out – rotor output; 

p (or t) – peripheral (tip) radius; 

r – rotor; 

r.c. – radial clearance; 

s – stream; 

spec – specified; 

T – corresponding  to isentropic (theoretic) fluid expansion; 

t – tip; 

u – circumferential direction projection. 
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Abbreviations 

C – Compressor 

CAD – Computer aided design system 

CC – Combustion chamber 

CU – Gas compressor unit 

EFF – Efficiency 

FMM – Formal mathematical model 

FP – Flow path 

GT – Gas turbine 

GTU – Gas turbine unit 

GV – Guide vane 

HPC – High pressure cylinder 

HPT – High pressure turbine 

IPC – Intermediate pressure cylinder 

LPC – Low pressure cylinder 

LPT – Low pressure turbine 

OMM – Original mathematical model 

R – Regenerator 

RH – Reheating 

RTE – Recycling turbine expanders 

RV – Rotor vane 

S – Stator 
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SC – Natural gas supercharger 

TC – Thermal cycle 

TE – Turbine expanders 

 



 

 

 

 

1 

Statement of the Axial Turbine’s Flow Path 

Optimal Design Problem 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

http://www.sciencepublishinggroup.com 11 

The methodology of a turbine optimal design as a complex multi-level 

engineering system should support the operation with diverse mathematical 

models, providing for each design problem communication between the 

neighboring subsystems levels. 

One approach to turbine design with using of block-hierarchical 

representation consists in the transition from the original mathematical models 

for the subsystems and numerical methods of optimization to "all-purpose" 

mathematical model and general method of parameters optimization. 

1.1  Mathematical Models and the Object Design Problem 

We will specify as original the mathematical model (OMM), which is a 

closed system of equations that describe the phenomena occurring in the 

designed object. 

Regardless of the mathematical apparatus (algebraic, ordinary differential, 

integral, partial differential equations, etc.), OMM can be represented 

symbolically as follows: 

    , , , 0Y Y B X L B X  , (1.1) 

where  ,X x u ;  ,L B X  – the operator defining the model’s system of 

equations. 

The parameters Y  characterize the quality indicators; B  – entering the 

subsystems model from adjacent levels, the operational environment of the 

object. Parameters X  can be either dependent, calculated by the OMM equation 

( x ) or independent, the choice of which provides the designer ( u ). It is 

understood that the number of internal parameters of the object includes all 

internal parameters of the elements of underlying layers. 
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Significant simplification and unification of the subsystems description 

achieved by OMM approximation with a model, which we call a formal 

macromodel (FMM). We represent the FMM as a complete polynomial of the 

2-nd degree, by which in many cases it is possible to approximate the output 

parameters with sufficient accuracy: 

    
1

0

1 1 1

n n n

i ii i i ij i j

i i j i

y q A A A q q A q q


   

     . (1.2) 

FMM parameters vector is expressed through the IMM parameters as 

  ,Q Q u B . (1.3) 

hence FMM may be represented symbolically as follows: 

  ,y y B u . (1.4) 

Comparing (1.4) and (1.1), we see that the FMM have no phase variables. 

The transformation of one model to another with a fewer number of variables or 

constraints, giving an approximated description of the investigated object or 

process compared to the initial, will be called aggregation. Thus, the FMM is 

aggregated with respect to (1.1). 

The problems of the object’s optimal design using models (1.1) and (1.4) will 

be called following: 

    max , , , , 0j
u U

Y B x u L B X


 ; (1.5) 

  max ,
u U

y B u


. (1.6) 

Suppose, that the problem (1.6) is solved for all possible values of the vector 

B


 that allows you to build approximation dependencies 
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    opt opt opt opt,y y B u u B  , (1.7) 

containing information on all kinds of optimal designs. The model (1.7) is 

aggregated with respect to (1.4) and (1.5). The same could be made with the 

OMM: by virtue of solving the equations of the model would have disappeared 

phase, and by optimizing – control variables. Usually, however, this task is too 

complex for the numerical solution. 

An approximate solution can be achieved with the help of disaggregation, i.e. 

mapping of aggregated variables in the model space of OMM. Substituting    

(1.7) to (1.1), we obtain: 

    opt, , , , 0j jY Y B x u B L B X  , 

where are optx  and opt

jY  – solution of OMM. 

For example, in the optimal design of turbine cascade the quality criterion is 

the energy loss ratio, OMM – ideal gas motion and the boundary layer on the 

profile equations, phase variables – flow parameters, control – profile shape, 

cascade spacing and others. 

In practice, instead of the loss calculation OMM various empirical loss 

calculation methods used, which, in fact, are FMMs of form (1.7), because does 

not take into account information about any and just about the currently best 

("optimum") profile cascades. In this way, at higher design levels use only the 

information on the improved aerodynamic profiles loss ratio. 

The approach described can be applied to multi-level design of complex 

systems. 
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1.2  Optimization of Complex Technical Devices 

1.2.1  Design Hierarchy 

Block-hierarchical representation of the design process, implemented with 

the creation of complex technical devices, leads to a problem of such 

complexity that can be effectively resolved by means of modern computing, and 

the results of the decision – understood and analyzed by experts. Typically, the 

design hierarchy of tasks is formed along functional lines for turbine can have 

the form shown in Fig. 1.1. 

 

 

Figure 1.1  Hierarchy of turbine design problems. 

 

 

Turboaggregate 

Module 

Stage 

Stage element 

Cylinder 
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Figure 1.2  Nearby hierarchy levels of optimization problems. 

The uniformity of mathematical models of the subsystems of the same level 

and local optimality criteria make it possible to organize the process of       

multi-level design, providing maximum global quality criterion of the whole 

system, in our case – the turbine. This process is based on the idea of so-called 

multilevel optimization approximation scheme that involves aggregation of 

mathematical models of the subsystems in the hierarchy when moving upward 

and disaggregation based on optimization results when moving downwards. 

The problem of optimization the subsystem parameters described by OMM 

has the form (1.5). It can be solved by the methods of nonlinear programming 

and optimal control, depending on the form of the equations and the optimality 

criterion of the OMM. 

Consider the solution order for the problems hierarchy of the system 

parameters optimization. Input parameters of k-level subsystem form of the set 

of internal and external parameters of the higher (k–1)-level subsystem. 

Feedback is carried out at the expense of the influence of the output parameters 

1kB 
  of the subsystem of k-level which with respect to the (k–1)-th subsystem is 

external. Complete vector of (k–1)-level external parameters, thus consists of a 

vector of external parameters 
1kB 

 , coming from the higher-level and  

lower-level subsystems of vectors 
1kB 

  (Fig. 1.2). 

x
k–1 

x
k 

B
k–1
 B

k–2
 

B
k
 B

k–1
 
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Moving from the bottom up, we solve the problem of the form (1.6) at each 

k-level for all possible values of the vector of external parameters coming from 

a higher level. In this phase k-level variables are excluded from the internal 

parameters of the (k–1)-level model by effect of equations describing the k-level 

subsystem, and control – as a result of optimization. Thus, at each level above 

information is transmitted not about all, but only about the best projects of 

lower-level subsystems: 

  opt

1k k kB Y B
  . (1.8) 

At the top, the 1-st level, from the problem (1.5) output parameters found, 

and predetermine external parameters of the level 2 subsystems, which makes it 

possible to restore the optimum parameters of the 2-nd level, solving the same 

problem (1.5). This disaggregation process extends to the lowest level, with the 

result that the optimal parameters are determined by all the subsystems that 

make up the complex technical systems. 

To implement practically the described scheme is possible using FMM 

subsystems. In terms of the FMM problem (1.5) is written in a form similar to 

(1.6): 

  max ,
k k

k k k
u U

y u B


 , (1.9) 

which immediately follows 

  opt

1k k kB y B
  , (1.10) 

which is quite similar to (1.8), but has the advantage that it is a known 

polynomial of the form (1.2). 

Methods based on the use of FMM is characterized in that before starting to 

solve the optimization problem on (k–1)-th level, it is replaced from the OMM 
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to FMM according to the condition (1.9). Driving multilevel optimization using 

FMM, is very flexible, allowing you to change the setting if necessary 

optimization tasks at any level due to changes in the components of vectors

 ,k k kQ u B . 

1.2.2  A Numerical Method for the Implementation of the Multilevel 

Optimization Approximation Schemes 

The current level of possibilities of computer technology and mathematics 

allow for a new approach to the organization of the block-hierarchical 

representation of the process of optimal design of axial turbine flow path       

(Fig. 1.1) and the information exchange between adjacent levels (Fig. 1.2). The 

essence of this approach lies in the application of the principle of recursion, 

provides automatic bypass facilities at all levels and solution for each object its 

local optimization problem in accordance with a predetermined scenario. 

On the basis of this method created invariant subsystem of recursive     

object-oriented multi-criteria, multi-mode and multi-parameter optimization, 

providing solution of optimization problems, taking into account various types 

of parametric, structural, technological and functional limitations. Designed for 

its optimization techniques are universal, and the search for the optimal solution 

for each object is carried out in accordance with the scenarios of computing 

processes optimization. 

Optimization scripts for all objects of all levels are formed and defined by set 

of components of the following vectors and lists: 

 optX – address list parameters to be optimized; 

 lXmin, lXmax – vectors defining the allowable range of variation of 

parameters to be optimized; 

 lYcq – address list of the object settings and quality criteria; 
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 lYw – object quality criteria weight vector; 

 lYfl – address list of parameters and functional limitations; 

 flMin, flMin – functional limitations permissible change vectors; 

 lYd – address list of settings – parametric constraints; 

 dlMin, dlMin – parametric constraints permissible change vectors; 

 lReg – list of regime (changing during the operation of the facility) 

parameters; 

 sRegim – list of lines with the data on the values of operating parameters 

and the appropriate time of the object for these values; 

 lLine – address list of parameters whose values are changed in the process 

of optimization by linear interpolation between the same type of 

parameters to be optimized nearby objects; 

 optM – method for solving the optimization problem of the local object. 

Forming all the lists, enumerated above, for all level objects and calling a 

recursive function, which includes a set of corresponding optimization 

algorithms, an automatic objects bypass and solving optimization problems for 

each of them is carried out. 

1.3  Building Subsystems FMM 

1.3.1  FMM Basics 

As noted, the FMM is an approximation of the original model, which means 

it can be obtained by statistical processing of the results of numerical 

experiment using OMM. The complexity of solving the equations of the 

original model forces minimize the number of sampling points, which is 

practically achieved by using methods of the theory of experiment design. Get 

the response function in the form (1.2) can, in particular, on the basis of      
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three-level Box and Benken plans [1]. Special selection of sampling points on 

the boundary of the approximation 

 1 1, 1, ,lq l N     (1.11) 

and in its center possible in accordance with the least squares method to obtain 

the values of the coefficients according to (1.2), without resorting to the 

numerical solution of the normal equations. The number of sampling points is in 

the range from 13 at N = 3 to 385 at N = 16. 

Similarly, relations (1.2) can also be obtained by using the three-level saturated 

plans by Rehtshafner [2]. In this case, the dimension of the observation vector 

will vary from 16 at N = 4 to 232 at N = 20. The feature of these plans is that it is 

the most economical plans that require a minimum number of calculations to 

generate a vector of observations, i.e. the number of calculations (experiments) 

equal to the number of the coefficients according to (1.2). 

When creating subsystems FMM quality criteria, should be noted, that at 

lower levels increases the degree of detailed description of the design objects, 

which leads to an increase in the dimension of 
kQ  vectors. If the dimension 

exceeds the permissible (N = 20), or for any reason is limited, for example, due 

to the complexity of OMM, it can be reduced by replacing a number of 

components of the control parameters vector defined by the laws of their change, 

by numbers of the same type subsystems (objects) at the considered design level. 

For example, in the formal macromodelling of the multi-stage turbine flow path 

efficiency, may be appropriate to change the degree of reaction, disposable heat 

drop and so forth linearly from stage to stage. To ensure information 

consistency between FMMs of adjacent levels, in a number of components of 

the vector 
1kQ 

 should be required to include parameters that uniquely 

determine the position of the subsystems in the settings space of a higher k-level. 
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It should be noted that in addressing the increasingly complex,               

multi-parameter, multi-mode and multi-criteria problems of optimal design 

increases the likelihood of multimodal objective functions. 

Using the dependency of the form (1.2) for the approximation of the 

objective functions and functional limitations in this case can lead to a decrease 

in the accuracy and adequacy of the obtained with its help optimal solutions for 

the projected objects or subsystems. 

1.3.2  The Method of Improving the FMM Accuracy 

The analysis of the structure of formula (1.2) shows, that its second term is a 

superposition of the parabola from each independent parameter that mainly 

determines the failure of functions of the form  2

1

n

i i ii i

i

A q A q


  take into 

account the more complex nature of real dependencies, having, for example, 

bends and local extremes. We will use a second member according to (1.2) to 

reflect the independent effect of the parameters on the approximated function, 

and replace it with a more perfect form of addiction. 

It is obvious that in the general case, the shape and structure of dependency, 

reflecting the influence of each parameter, is unique. Given that a priori a kind 

of dependency is not known, to solve this problem and ensure that the principle 

of universality, the second term of the form  2

1

n

i i ii i

i

A q A q


  should be 

replaced with the superposition of interpolation cubic splines. As known, the 

interpolation cubic splines allow with a high degree of accuracy and adequacy 

to describe features of varying complexity, including multi-extremal. Thus, 

taking into account this replacement, the formal macromodel of the form (1.2) 

will be as follows: 
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  
1

0

1 1 12 6

n n n
ij ij

ij ij ij ij ij ij i j

i i j i

c d
y q A a b q q q A q q  



   

   
           

   
  , (1.12) 

where , , ,ij ij ij ija b c d  – cubic spline coefficients of current (j-th) interpolation 

section of the i-th independent variable. For each independent normalized 

variable iq  there are several areas in the interpolation range between –1 and +1; 

ijq  – the distance between the current value iq  and coordinate of the initial 

node of j-th section of the spline, which iq  coordinate value is between the 

initial coordinates of (j-th) and final (j + 1-th) of its nodes. 

Of course, for the coefficients , , ,ij ij ij ija b c d  of dependence (1.12) 

determination additional computational experiment is needed. This experiment 

carried out at the points of a normed space of independent variables iq . The 

length of the interpolation areas and their nodes coordinates are the same for all 

the independent variables. The number of sections is given. The minimum 

required number of sections is four. In this case, an additional calculation of the 

objective functions at four points (1; 0.5; 0.5; 1) by each variable iq  is needed. 

To ensure the principle of an independent effect of each variable, other 

variables in the calculation are assigned by the value 0 ( 0jq  ), which 

corresponds to the center of the accepted range of their changes. It should also 

be noted that in the case of Rehtshafner’s design plans to create more accurate 

FMM of form (1.12) the number of computations by OMM is reduced for each 

independent parameter of FMM by two and equal, accordingly, two, since the 

other two points coincide with the points of the Rehtshafner’s plan and their 

corresponding calculations for OMM performed at the stage of creating a FMM 
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of form (1.2). For clarity, in Fig. 1.3 shows a comparison of the accuracy and 

the adequacy of the approximation of test functions of the form: 

 
2 22 0.1 0.1 sin sinZ X Y X Y     , (1.13) 

by formal macromodel of the form (1.2) and the form (1.12). 

 

a 

  

b c 

Figure 1.3  Comparison of the accuracy of approximation of multimodal function using 

formal macromodel: a – test multimodal function of the form (1.13); b – approximation 

of functions of the form (1.13) using formal macromodel of the form (1.2);  

c – approximation of functions of the form (1.13) using formal macromodel of  

the form (1.12). 
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1.4  Optimization Methods 

1.4.1  General Information About the Extremal Problems 

To solve problems with the single criterion of optimality rigorous 

mathematical methods are developed. 

Direct methods of the calculus of variations – one of the branches of the 

theory of extreme problems for functional – reduce the problem of finding the 

functional extremum to the optimization of functions. 

There are analytical and numerical methods for finding optimal solutions. As 

a rule, the real problems are solved numerically, and only in some cases it is 

possible to obtain an analytical solution. 

Functions optimization using differentiation 

Finding the extremum of the function of one or more variables possible by 

means of differential calculus methods. It’s said that the x  point gives to 

function  f x  local maximum, if there is a number 0   at which from the 

inequality x x    the inequality    f x f x  comes after. 

The function is called one-extremal (unimodal) if it has a single extremum 

and multi-extremal (multimodal), if it has more than one extremum. The point 

at which the function has a maximum or minimum value of all local extrema, 

called a point of the global extremum. 

A necessary condition for an extremum of a differentiable function of one 

variable gives the famous Fermat’s theorem: let  f x  – function of one 

variable, differentiable at the point x . If x  – local extreme point, then 

  0f x  . 
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The points at which this relationship is satisfied, called stationary. The 

stationary points are not necessarily the point of extreme. Sufficient conditions 

for the maximum and minimum functions of one variable – respectively 

  0f x  ,   0f x  . 

Before proceeding to the necessary and sufficient conditions for extrema of 

functions of several variables, we introduce some definitions. 

The gradient of function  f x  is a vector 

 

 

 

1

n

f x

x

f x

f x

x

 
 
 

 
   

 
 
 
  

, 

 T f x  denotes the row vector 

 
   

1

, ,T

n

f x f x
f x

x x

  
   

  
. 

A square matrix of second derivatives 

   

   

   

2 2

2

1 1

2

2 2

1 2

n

n

n

f x f x

x x x

f x h x

f x f x

x x x

  
 

   
   
 
  
 
   

 

is called the Hesse matrix or Hessian of function  f x . 
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The real symmetric matrix H is called positive (negative) defined if 

 0 0Tx Hx    for every set of real numbers 1 2, , , nx x x , not all of which 

are zero. 

The necessary conditions for that x  – the point of local extremum of n 

variables function  f x , nx E  are as follows: 

1) the function  f x  is differentiable in x ; 

2)   0f x  , that is x  – the stationary point; sufficient conditions for that 

x  – local extreme point, but "1", "2" include the following; 

3) Hessian is positive (negative) determined at the minimum (maximum), i.e. 

 0 0Tx Hx   . 

If the Hessian is positive (negative) defined for all nx E , it is a sufficient 

condition of unimodality of the function. To test matrix A definiteness, 

Sylvester criterion is applied, according to which the necessary and sufficient 

condition for positive certainty are the inequalities: 

11 1

11 12

11

21 22

1

0, 0, , 0

n

n nn

a a
a a

a
a a

a a

   , 

as to the negative certainty 

 
11 1

11 12

11

21 22

1

0, 0, , 1 0

n
n

n nn

a a
a a

a
a a

a a

     . 

Tasks for conditional extremum of function 
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This case involves determining the extremum in an infinite change range of 

variables 1 2, , , nx x x . If optimized function imposed additional conditions 

(restrictions), talk about the problem of conditional extremum. In general, you 

want to find extremum  f x , nx E  under the constraints 

 
 

 

0, 1, , ;

0, 1, , .

j

j

h x j m

g x j p

  


  

 (1.14) 

To solve the problem (1.14) only with restrictions in the form of equations a 

method of Lagrange multipliers is used, which is based on the conduct of the 

Lagrange’s function      
1

,
m

j j

j

L x f x h x 


  , where j  – undetermined 

Lagrange multipliers. We write the necessary conditions for optimality in the 

problem of conditional extremum with equality constraints 
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0, 1, , .

m
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i

hL f
i n
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





  
    

   


   
 


 (1.15) 

It is a system of n + m equations from which can be determined ix , 

1, ,i n , j , 1, ,j m . A rigorous proof of the Lagrange conditions set out 

in the specific manuals. Explain the meaning of the method as follows. On the 

one hand, for all of x which satisfy the constraints   0jh x  , 1, ,j m , 

obviously    ,L x f x  . 

On the other hand, the extreme point of the Lagrange function also satisfies 

these conditions (the second equation (1.14), and therefore, finding an 

extremum  ,L x  , we simultaneously obtain a conditional  f x  extremum. To 
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address the issue of the presence of a stationary point to be a local extremum in 

the problem of conditional extremum, let us expand Lagrange function in a 

Taylor series with a subject to the satisfaction of relations   0jh x  . 

       , ,f x f x L x L x          

 
2

2

1 1 1

1
( )

2

n n m

i i j

i i ji i j

L L
o

x x x
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 
  

  
  , (1.16) 

and according to (1.15) the first term on the right side is zero. The expansion of 

a Taylor series  jh x  in the neighborhood of a stationary point x  yields 
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1

( ) 0, 1, ,
n
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i

i i

h
o j m

x
 




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
 , (1.17) 

Neglecting terms of higher order, write (1.16), (1.17) in the form 

    
2

1 1 1

1
; 0, 1, ,

2

n m n
j

i j i

i j ii j i

hL
f x f x j m

x x x
   

  


    

  
  . (1.18) 

If from the second equation (1.18) the dependent variables i , 1, ,i m , 

can be expressed through independent k , 1, ,k m n  , then substituting 

them in the first equation (1.18), we obtain a quadratic form relatively 

independent increments 1, ,m n  . The stationary point x  is a local 

conditional minimum (maximum), only if it is positive (negative) defined. 

Optimization with constraints in the form of inequalities 

Classical methods of finding the conditional and unconditional extrema of 

functions discussed above, in some cases, allow to solve problems with 

inequality constraints. 
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Figure 1.4  For extremum determination of the functions of one variable in the interval. 

Let the task of finding the maximum of a function of one variable  f x  on 

the interval a x b  . Using the necessary optimality conditions, we find the 

roots of   0f x   which lie in the interval  ,a b ; We check the suffi-ceent 

conditions for maximum   0f x   and choose the points corresponding to the 

maximum. Also, we compute the function values at the borders of a segment, 

where it can take higher values than the interval (Fig. 1.4). 

We turn now to the case of several variables and consider the optimization 

problem: find a maximum  f x , nx E , subject to the constraints: 

 
  0, 1, , ;
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 (1.19) 

In the first stage of the solution by the method of Lagrange multipliers, we 

find all stationary points lying in the positive octant of n-dimensional space and 

isolate the maximum points on the basis of sufficient conditions for an 

extremum. Then we explore the positive octant boundary, in turn equating to 

f(x) 

a                                               b  x 
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zero in all sorts of combinations of 1, 2, , 1n m   variables, and each time 

solving the optimization problem with equality constraints. As a result of the 

computing process, the complexity of which is obvious, the largest of all the 

extrema should be selected. 

A more general problem, find the maximum 

  f x , nx E  (1.20) 

under constraints   0jh x  , 1, ,j m ;   0ig x  , 1, ,i p , can be 

reduced to just considered by the introduction of additional variables iy , 

1, ,i p , such that 

   0, 0i i ig x y y   . (1.21) 

The extremum can be achieved in a region, where 0iy  , or at its borders, 

where 0, 1, ,iy i p  . Lagrange function for the constrained optimization 

problem (1.20), (1.21) has the form 

        
1 1

, ,
pm

i i m i i i

i i

L x y f x h x g x y   

 

     . 

In the optimum point its partial derivatives by , ,j j jx y   vanish, including 

0, 1, ,m j

j

L
j p

y
 


  


. 

This condition means that if at the point of extremum 0jy  , then 0m j   , 

on the other hand, if 0jy  , that is on the border area 0m j   , as the 

corresponding limit should be considered. Thus, the property 
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0, 1, ,j

j

L
y j p

y


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
 is proved. Obviously, the problem (1.20) and (1.21) 

are completely identical to (1.24) and can be solved in the same way. 

For the problem can be written necessary optimality conditions (generalized 

Lagrange multiplier rule), however, it is rarely used because of the complexity 

of solving the resulting system of equations. 

1.4.2  Nonlinear Programming 

Subject of nonlinear programming 

Nonlinear programming – branch of applied mathematics dealing with 

finding the extremum of function of many variables in the presence of non-

linear constraints in the form of equalities and inequalities, i.e. solution of the 

problem (1.14), discussed in the previous section [3]. 

Classical methods of optimization are part of it, along with disciplines such 

as linear, quadratic, separable programming. However, of the greatest practical 

interest to us are the numerical or direct methods of nonlinear programming, 

especially intensively developed in recent years. 

None of the proposed algorithms is absolutely the best, so the choice of a 

numerical method is dictated by the content of a specific problem, which must 

be solved. Computational methods are classified according to some peculiarity 

of the problem (no restrictions, with equality constraints, inequalities and so on), 

the nature of methods of solutions (e.g., with or without the use of derivatives), 

the type of computers, programming language, and so on. 

Search of one variable function extremum 

A number of methods of finding an extremum of function of many variables 

use as a part the procedure for the one-dimensional optimization. In the case 

then function of one variable is multi-extremal, the only correct method of 
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finding the global extremum is a direct enumeration of a number of values with 

some step in its change. 

Obviously, the function can vary sharply, the smaller should be chosen the 

grid. After a rough determination of the neighborhood of extremum, begin to 

search its exact value. For this purpose, one-dimensional algorithms for 

searching the extremes of unimodal functions in a given interval are used. 

One of the most effective methods is the so-called golden section. Recall that 

if a segment divided into two parts, so that the ratio of the lengths at a greater 

relative length equal to the length of most of all segment, obtain the so-called 

golden ratio (is approximately 0.38: 0.62). Golden section method just based on 

the multiple division of uncertainty interval, i.e. the interval in which the 

extremum enclosed in an appropriate ratio. 

Suppose that in some approximation known interval i  in which the function 

extremum exists. Divide it by points 1 2,i iy y  in the proportion of the golden 

section. If 2 1

i iy y  we discarded 2

ix , indicating 
1

2 2

i ix y   a segment 1i   share 

in the proportion of the golden section, and so on. To reduce the range of 

uncertainty in the 100 times 11 calculations is required, in the 10000 times –  

21 calculations. For comparison, the bisection method (dichotomy) leads to a 

corresponding narrowing of the range of 14 and 28 function evaluations. 

The advantage of the golden section is that it works equally well for smooth 

and non-smooth functions. It was found that, in the case of smooth functions by 

a polynomial approximation possible to quickly determine the number of 

extreme at the same accuracy as that by the golden section. 

If the optimized function is defined and unimodal on the entire real axis, there 

is no need to worry about selecting the initial uncertainty interval. For example, 

in the method of Davis, Sven and Campy (abbreviated as DSC), from a certain 
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point, it becomes increasing steps until extremum is passed, and then made 

quadratic interpolation on the basis of information about the functions in the 

past three points is determined extremum of the interpolation polynomial. 

The Powell’s algorithm of quadratic polynomial interpolation is carried out 

in three arbitrary points, approximate extremum is found, dropped one of the 

four points and the procedure is repeated until convergence. The most effective 

is a combination of the described algorithms, or the so-called method of     

DSC-Powell. In accordance with this first algorithm DSC sought interval in 

which the extremum, three points are selected and carried there through 

parabola. Approximate value at an extremum is calculated as in the method of 

Powell: 

           

           

2 2 2 2 2 2

2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

1

2

x x f x x x f x x x f x
x

x x f x x x f x x x f x

    


    
. 

If the value of the function at the point x


 of optimum values  1f x ,  2f x , 

 3f x  differ by less than a predetermined accuracy, complete calculations, 

otherwise discard the worst of the points 1 2 3, , ,x x x x , and carry out a new 

parabola. For functions that are sufficiently close to quadratic efficiency      

DSC-Powell is very high: as a rule, the decision to an accuracy 
510

…
610

 is 

achieved 6–8 calculations of the objective function. 

Methods for unconstrained optimization 

Consider the problem of finding the maximum of a function of several 

variables without restrictions. Find maximum  f x , nx E . One of the most 

famous is the gradient methods to solve this problem. They are based on the fact 

that the promotion of the objective function to the extreme in the space nE  

made by the rule 



◆◇     Chapter 1  Statement of the Axial Turbine’s Flow Path Optimal Design Problem     ◇◆ 
 

http://www.sciencepublishinggroup.com 33 

 1k k kx x x   . (1.22) 

There kx  – transition vector from point kx  to the point 
1kx 
, k k kx s  , 

where ks  – the unit vector in the direction kx ; k  – a scalar. 

Vector ks  sets another search direction and k  – the length of a step in this 

direction. Obviously, k  should be chosen so as to move as close as possible to 

the extreme. Various methods of selecting the direction of the search are used. 

The simplest of these is that the movement of the point kx  is made in the 

direction of the greatest magnification of  kf x , i.e. in the direction of a 

gradient function at a given point. 

According to this method, called the method of steepest descent, 

 

 
k

k

k

f x
s

f x





, 

where  
 

2

1

n
k

k

i i

f x
f x

x

  
   

 
 , and the formula of the transition from kx  to 

1kx   has the form 

 
 

 
1

k

k k k

k

f x
x x

f x



 


. (1.23) 

Consider a geometric interpretation of the steepest descent method in the case 

of two variables. Transition from formula (1.21) does not allow to come to a 

point extremum by one step; the procedure should be repeated many times until 

it reaches a maximum, i.e., conditions 0f   are fulfilled. Partial derivatives 

of the function calculation at points generally performed numerically. Search 

step, you can select a constant, but it is better to define it in terms of 
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 max
k

k k kf x s


  

using the previously discussed methods of one-dimensional search. 

The theory shows, and the practice of calculation confirms that the steepest 

descent method is not very effective in cases where the level curves of the 

objective function is strongly stretched, i.e. there are deep ravines while 

searching a minimum or ranges when searching maximum. The steepest descent 

direction is almost orthogonal to the best direction of the search, as a 

consequence, the optimal step reduced all the time, and the algorithm "get 

stuck" without reaching the extreme. The way out of this situation can be a 

scaling of variables, at which the level lines would get kind of close to the circle. 

In order to reduce the amount of computations of the objective function, 

associated with a numerical definition of partial derivatives, sometimes used 

method of coordinate descent, which is also called a relaxation or Gauss-Seidel 

method. Let ie  – axis ix  unit vector, and  1, , nx x x  – the starting point of 

the search. One iteration of coordinate descent is to take steps: 1k k k kx x e   , 

1, ,k n . 

Step as in the method of steepest descent is determined by the condition 

 max
k

k k kf x s


 . The Gauss-Seidel method suffered from the same flaw as the 

steepest descent method, – a bad convergence in the presence of ravines. 

One way to overcome the computational difficulties associated with the gully 

structure of the objective function involves the use of information not only on 

its first derivative, but also higher order, contained in the second partial 

derivatives. An arbitrary function can be represented by its quadratic expansion 

in a Taylor series in the neighborhood of point x: 
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         
1

2

T Tf x x f x f x x x H x x       . 

The minimum in the direction x  is obtained by differentiation for each of 

the components of the vector x , which gives 

    1x H x f x    . (1.24) 

If we substitute (1.23) into (1.21), we obtain an expression for the minimum 

point of the quadratic function 

    1x x H x f x   . (1.25) 

In the case where the objective function from the outset is a quadratic, the 

optimum point is found by one step, but if the function is arbitrary, this fails to 

achieve the minimum and should be repeatedly use the formula (1.25): 

    1

1k k k kx x H x f x

    . (1.26) 

Even better, by analogy with gradients instead of (1.25) to use the relation 

 
   

   

1

1 1

k k

k k k k k k

k k

H x f x
x x s x

H x f x
 



 


   


, (1.27) 

and the step k  choose from the  kkk sxf
k




min  minimum condition. 

Equations (1.26) or (1.27) are applied iteratively until the end calculation 

process criterion is reached, called Newton’s method. Difficulties of using 

Newton algorithm associated, firstly, with Hessian matrix inversion, and 

secondly, with the computation of the second partial derivatives, which restricts 

its practical use. 

The methods of conjugate directions are without drawbacks of gradient 

methods and have the convergence rate close to Newton’s method. At the same 

time, they are the methods of the first order, as the gradient. Positive defined 
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quadratic form of n variables is minimized conjugate gradient method for no 

more than n steps. The conjugate gradient method is suitable for minimization 

of non-quadratic functions, only when they are iterative. 

Two vectors x, y in the space nE  called conjugate relative to the matrix H, if 

0Tx Hy  . Consider the quadratic function of the n variables 

  
1

2

T Tf x a x b x Hx    (1.28) 

with a positive defined matrix H. Let’s apply for function  f x  minimization 

iterative process 1k k k kx x s   . The direction of descent to k-th step is one of 

the vectors of conjugate vectors 0 1 1, , , ns s s  . If you select k  from the 

minimum of  k k kf x s , i.e. 
( )k k k

k

f x s



 


, that, differentiating by step 

(1.27), we obtain 

 
 T

k

k T

k k

f x s

s Hs



  . (1.29) 

Applying the formula (1.28), (1.29), on n -th step of the iterative process will 

find 

 
 1 1

0 0

0 0

Tn n
k

n k k T
k k k k

f x s
x x s x

s Hs


 

 


     . (1.30) 

We can say that the point nx  is the exact minimum of the function  f x , i.e. 

1

nx x H b   , which means that the process (1.30) with the choice of k  by 

(1.28) does give the opportunity to find the minimum of a quadratic function by 

n steps. 
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There are different ways of constructing conjugate directions. In particular, 

Fletcher and Reeves proposed a method, called the conjugate gradients method, 

according to which the subsequent direction of the search is a linear 

combination of the direction of steepest descent and the previous direction, i.e., 

   1 1k k k ks f x s     . (1.31) 

As the initial search direction  0 0s f x   is chosen. The weighting factors 

1k   are determined so that the directions 0 1 1, , , ns s s   were conjugated. It can 

be shown that 

 

 

2

1 2

1

k

k

k

f x

f x
 







. 

Since the direction of the search is conjugated to a quadratic function, the 

Fletcher-Reeves method leads to the solution of no more than n steps. In the 

case of an arbitrary function is recommended after every n steps "upgrade" the 

search direction by setting  n ns f x   and repeat the process (1.30) with 

replacement of 0x  to nx . 

Some methods do not use the derivatives of functions, and the optimization 

direction in which tis determined only on the basis of successive calculations of 

the objective function. In cases where the determination of the objective 

function derivatives is difficult, search algorithms may be preferable. In the 

case of one-dimensional analogue of the search method is the method of golden 

section, and the method of using derivatives – DSC-Powell method. 

Methods of optimization with constraints 

In addition to the previously described method of Lagrange multipliers for 

finding the extremum of functions with restrictions a number of numerical 
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methods developed. The first approach to the construction of algorithms for 

constrained optimization is monotonous motion to the optimum of the objective 

function and at the same time striving to meet the exact or approximate limits. 

Methods of this type are numerous, but the complexity, lack of flexibility and a 

large amount of computational work limit their use in practical calculations. 

More elegant, easy to implement and effective the methods based on the 

reduction of problems with constraints to the solution of a sequence of 

unconstrained optimization – the so-called penalty function methods. There are 

several variations of these methods. 

Let’s begin their consideration with the interior point method for problems 

with inequality constraints: 

find the maximum  f x , nx E  

with restrictions    0, 1, ,jg x j p  . (1.32) 

To determine the conditional extremum built the so-called attached objective 

function  

    
 

*

1

1
,

p

k k k

j j

I x f x
g x

 


   , (1.33) 

where k  – a number, called penalty factor; 
 1

1p

j jg x

  – penalty function. 

The algorithm for solving the problem (1.32) is the following: allowable point 

0x  at which everything  0 0jg x   is selected, and a monotonically decreasing 

sequence of positive penalties k ; for every 1, 2, ,k   starting with the point 

1kx  , it solves the problem of unconstrained optimization function (1.33). 
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If for every k it is possible to find the maximum of 
*

kI  by x, the sequence 

 kx  converges to the solution of the problem (1.33). 

The organization of numerical maximum search of (1.29) must be such that 

the point does not leave the feasible region. This shortage is deprived the 

external penalty function method, which for the problem of the form (1.33) 

involves the construction of the associated objective function 

       
2

*

1

,
p

k k k j

j

I x f x g x  



   , (1.34) 

Where     min 0,j jg x g x  . 

Thus, inside the allowable region, where   0jg x  ,   0jg x  , and 

   j jg x g x   outside. 

In contrast to (1.33), the function (1.34) is defined for all nx E . 

The algorithm for solving the problem is as follows: take an arbitrary point 

0x , and monotonically increasing sequence of numbers k  ; for

1, 2, ,k   starting from 1kx  , it solves the problem of unconstrained 

optimization function (1.34), with the result that is determined the new 

approach kx . 

It can be shown that the sequence of points kx  converges to the solution of 

the problem (1.33), but in contrast to the interior point method to the extreme 

movement takes place outside the feasible set, and is taken from the name of the 

method of exterior penalty functions. This method is also applicable to the 

general problem of nonlinear programming (1.14), for which used attached 

objective function 
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         
2

* 2

1 1

,
pm

k k k j j

j j

I x f x h x g x  

 

 
   

 
  . (1.35) 

Algorithm of solution is the same as for the problem (1.34). 

The solution of nonlinear programming problems with constraints using 

penalty function method is complicated by the fact that as the penalty function 

coefficient is increasing, (1.35) expressed gully structure. As previously shown, 

not all the methods of unconditional optimization solution can cope with such 

problems, and therefore the choice of the method of finding the extremum of the 

attached objective function is of fundamental importance. 

An important role is also played the strategy of the penalty factor change, 

because if you choose it immediately large, constraints of the problem satisfied 

well, but the objective function does not improve. In contrast, if too small 

values of k , motion occurs in the direction of improvement of the objective 

function, but practically does not take into account the constraints that can lead 

to failure in the nE  areas where the objective function and constraints are not 

defined. 

For example, if in the objective function or in limitations members of the 

form ax  are present, it is unacceptable entering the zone 0x  . Get rid of the 

zone uncertainty, resulting in the computer calculations for emergencies can 

sometimes be the introduction of a suitable change of variables. In particular, to 

meet conditions 0x   the replacement zx e  is suitable, which already 1z E . 

If such a reception is impossible, it should be carefully selected constants of 

unconditional search methods as the length of the step in the direction of 

descent, change of this step in the process to find a one-dimensional vector of 

variables did not leave the area where the objective function and constraints of 

the problem identified. 
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In conclusion, we consider the possibility of nonlinear optimization methods 

usage in order to solve systems of nonlinear equations. Suppose that in the 

problem (1.14) there are no restrictions in the form of inequalities, and the 

number of variables equal to the number of restrictions in the form of equations, 

i.e., in fact, the task of solving the system of m equations with m unknowns. We 

form the function 

  * 2

1

m

j

j

I h x


   (1.36) 

and find its maximum. If the system of equations   0jh x  , 1, ,j m , has a 

solution, then, obviously, at the same time with the maximum of *I  is the root 

of the system of equations. In particular, if the functions  jh x  are linear, 

function (1.36) is obtained quadratic and can be effectively solved by Newton’s 

and conjugate gradient method. 

Replacement of the problem of systems of linear equations solution to 

extremum problems is justified in cases where the matrix of the system is       

ill-conditioned (e.g., in the problem of approximation by least squares) and can 

not be solved by conventional methods, in particular, by process of elimination. 

The values  jh x  in (1.35) are called residuals, and the solution of nonlinear 

equations is replaced by minimizing the sum of squared residuals. 

1.4.3  Methods for Optimization of Hardly Computable Functions 

In some problems, when the calculation of the value of the objective function 

may take minutes, hours or even days of the computer, the range of acceptable 

methods of optimization significantly narrowed. 

These problems, in particular, include aerodynamic optimization of turbine 

blades using CFD. 
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The Nelder-Mead method (Nelder A.-Mead R.), also known as the flexible 

polyhedron method or the simplex method is a method of unconditional 

optimization of functions of several variables. Without requiring computation of 

the gradient function, it is applicable to non-smooth, noisy functions, and is 

particularly effective in small (up to 6) number of variable parameters. Its 

essence lies in the follow-successive movement and deformation of the simplex 

around the point of extreme. The method is a local extremum and can "get 

stuck" in one of them. If you still need to find a global extremum, one can try to 

select other initial simplex. 

A more developed approach to the exclusion of local extrema offered 

algorithm based on the Monte-Carlo method, as well as evolutionary algorithms. 

The genetic algorithm (GA) – is a global search heuristic method, used to 

solve optimization problems and modeling, by random selection, combination 

and variation of the required parameters with the use of mechanisms that 

resemble biological evolution. GA usage assumes its careful adjustment on 

special test functions, which, however, does not guarantee the effectiveness of 

the algorithm and the accuracy of decisions of the function. 

This algorithm is well suited to the study of noisy functions, but requires a 

large number of CFD – calculations and therefore more time on optimization. 

The last forcing researchers to use coarse meshes and not quite accurate, but 

easily calculated turbulence models, which will inevitably leads to loss of the 

numerical calculations precision. 

Monte-Carlo (random search) methods allows you to find the extremes of 

multimodal and noisy functions; use various constraints during optimization; is 

particularly effective when a large number of variable parameters; requires 

careful adjustment for test functions; it is one of the most common methods of 

optimization and solution of various problems in mathematics, physics, 

economics, etc. However, the method requires tens of thousands of the objective 
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function computing and practically not applicable for direct optimization based 

on CFD – calculations. To improve the efficiency of random search used    

quasi-random sequence of numbers (LP [4] Sobol), Faure, Halton et al.). 

Increased efficiency is achieved by eliminating clustering that occurs in a 

random search that is by more even distribution of points in the search study 

area of the function extremum. 

Recently, in the optimization algorithms the methods of experiment planning 

are widely used. Using the methods of the theory of experimental design 

(Design of the Experiment – DOE), the original mathematical model can be 

approximated by a quadratic polynomial. One of the relevant planning schemes 

of the experiment described in Section 1.3. These quadratic polynomials can be 

used to further optimization with the use of a universal and reliable global 

search method using a quasi-random sequences. 

1.5  The Practice of Numerical Methods Usage for Local 

Leveled Optimization Problems Solution 

To solve demanded by practice of axial turbines design multi-criteria 

problems, multi-parameter and multi-mode optimization of the multistage flow 

path further development and improvement of appropriate numerical methods 

and approaches required. 

It should be noted some features of numerical solution of problems related to 

the optimization of design objects based on their modes of operation, 

multimodal objective functions, as well as issues related to the multi-objective 

optimization problems. 

Some aspects of the above problems solutions are given below. 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

44  http://www.sciencepublishinggroup.com 

1.5.1  Solution of the Multi-Criteria Optimization Problems 

Set out in section 1.4 are the basic optimization techniques. However, 

depending on the formulation of the optimization problem, as well as the 

selected design object there are some features of numerical implementation of 

these methods and their applications. 

It is known that the actual design object is usually characterized by a number 

of quality indicators and improvement in one of them leads to a deterioration in 

values of other quality criteria (Pareto principle). In such cases it is necessary to 

consider the optimization problem from many criteria. 

The authors offer a well-established practice in solving multi-objective 

optimization problems – "convolution" of partial objective function weighted by 

i  depending on the importance of a particular quality criteria in a 

comprehensive quality criteria based on the following 

     
2

* *

1

, ,
n

d p i i d p

i

Y x x Y x x


  , (1.37) 

where *

iY  – the components of the vector criterion (partial indicators of quality 

of the object); ,d рx x  vectors of design parameters and operational parameters, 

respectively, which together define a design decision. 

In fact, (1.37) is the magnitude of the partial criteria of quality, taking into 

account their weights ( i ). 

Thus, in the n-dimensional normalized criterial space each variant of 

definitely best design object is characterized by a corresponding so-called 

Pareto point, whose distance to the center of coordinate proportional to the 

value of the module  * ,d pY x x  of vector quality criterion. 
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The experience of steam turbines cylinder optimization with the flow 

extraction for the purposes of regeneration and heating shows that there is 

needed to consider at least two criteria of quality – the efficiency of the flow of 

the cylinder and the power, generated by them. 

1.5.2  The Numerical Solution of the Optimization Problem with the 

Multimodal Objective Function 

In some cases it is necessary to check the objective function on multimodality. 

In the developed subsystem of multi-criterial and multi-level multi-parameter 

optimization of design objects to find the optimal solution the search is always 

performed in two stages whether unimodal or multimodal objective function. 

Thus, the first (preliminary) stage is used to determine suspicious extremum 

points, to find which method is used ideas swarm (Bees Algorithm), the first 

work of which were published in 2005 [5, 6]. The method is an iterative 

heuristic multi-agent random search procedure, which simulates the behavior of 

bees when looking for nectar. 

The criterion for the selection of points and their respective sub-areas, in 

which will be specified by the relevant decision of optimization problems, is the 

Euclidean distance ab a bR x x   in the space of optimized parameters between 

the compared points from the set LP sequence. 

If the Euclidean distance abR  between two points of LP sequence  ,a bx x , 

less than some fixed value setR , then point with the large value of the objective 

function is selected. 

Criteria evaluation for quality and functional limitations at the preliminary 

stage is performed by using FMM (of the form (1.2) or (1.12)). After processing 
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all of the set of LP sequence points by a "swarm" algorithm suspicious 

extremum point are defined. 

These points are then used as initial approximations of the final (refining) 

stage of the optimal solution finding. When refining the optimal solutions 

around the extremum suspicious spot, in a recursive optimize algorithm it is 

provided the transition from the evaluation criteria of quality and functional 

limitations by using FMM to their evaluation by appropriate OMM. It uses a 

method of coordinate descent or conjugate gradient method, for example, 

Fletcher-Reeves. Thus found several points of local optima are sorted by the 

value of the objective function, and the best solution given the status of optimal. 

1.5.3  The Method of Optimization Taking into Account Turbine 

Operating Modes 

The above (1.37) convolution vector type of the objective function allows to 

take into account the specific feature of the problem of optimal design of 

facilities intended for use as a constant, and the variable modes. In the case of 

optimization taking into account the variability of operating loads,           

function (1.37), on the one hand, carries information about the overall 

effectiveness of the design in all modes of operation, and on the other hand, it 

emphasizes the Pareto signs of the competitive effect of 'individual' quality 

criteria for each of the operating modes on the final result. 

Below is a description of the developed method, which provides the solution 

of problems of optimum design of turbomachinery, operated at a predetermined 

range of modes. 

This method is based on the integration of formal macromodels of the 

objective functions. 

When included in the examination of the alleged operation modes, created 

FMM criteria of quality and functional limitations are functions of the design 
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and operational parameters. Ranges of change of regime parameters are selected 

in accordance with the proposed schedule changes and they do not change in the 

course of iterations to refine the optimal solutions. 

Such FMM usage at the step of finding the optimal solutions necessitates 

multiple evaluation of quality criteria and functionality limitations for each 

sampling point (corresponding to a combination of structural parameters), the 

number of calculations of each FMM considered equivalent to the number of 

operating modes. Obviously, the increased number of calculations requires 

additional computing resources in the search for the best design. 

The decision of the problem marked can be achieved by eliminating the 

regime parameters of the vector of varied FMM parameters (1.2). To eliminate 

the regime parameters it is necessary to carry out the FMM integration. In this 

case, the new FMM coefficients of integral quality criterion obtained from the 

following relationship: 

   
1 1

0

1 1 1 10

c m c cN N N N

i i j j ik i k

i j i k i

Y q A A q A q t dt A q q


    

         

     
1 11

1 1 1 10 0

m m c mN N N N

jm j m ij i j

j m j i j

A q t q t dt A q q t dt


    

       

  
1

2 2

1 1 0

c mN N

ii i jj j

i j

A q A q t dt
 

    , (1.38) 

where ,c mN N  – numbers of structural and operational parameters, respectively; 

t – time. 

The new FMM of form (1.38) contains integrals of regime parameters, which 

can be calculated from the charts of regime parameters   jq t  and converted 

to the form: 

    
1

2

0

1 1 1

c c cN N N

m m im i ii i ik i k

i i k i

Y q A A q A q A q q


   

      , (1.39) 
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where 

 

   

   

 

1 1

2

0 0

1 0 0

11

1 1 0

1

1 0

;

.

m

m m

m

N

m j j jj j

j

N N

jm j m

j m j

N

im i ij j

j

A A A q t dt A q t dt

A q t q t dt

A A A q t dt





  



 
    

 



 


 


  

  

 

 (1.40) 

FMM form (1.39) is more convenient to use in the optimization algorithms 

for quality criteria and functional constraints evaluation, as presented 

macromodel depends only on the design parameters that do not change their 

values when changing the operating mode of the FP. Thus, the account of the 

expected schedule change duty operation is performed due to the fact, that the 

operating parameters are integrally included in the new coefficients FMM 

(1.40). 
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2.1  Equations of State 

The equation of state can be written in different forms depending on the 

independent variables taken. Numerical algorithms should allow to calculate 

and optimize the axial turbine stages, both with an ideal and a real working fluid. 

It uses a single method of calculating the parameters of the state of the working 

fluid, in which as the independent variables are taken enthalpy i and pressure P: 

      , ; , ; ,T T P i P i S S P i    . (2.1) 

For a perfect gas equation of state with P and i variables are very simple: 

 
0

1
; ; ln ln

p

p

p

C P
T i S S C i R P

C R i
     . (2.2) 

For the water steam approximation formula proposed in [7] is used, which 

established a procedure to calculate parameters of superheated and wet fluid. 

It is easy to verify that the knowledge of the value of the velocity coefficient 

Tw w   allows to determine the value of losses at the expansion 

2
2

2

1
2Ti i w






   and obtain an expression that relates the enthalpies Ti  and 

i at the end of the isentropic and the actual process of expansion, as well as 

stagnated enthalpy in relative motion 
* 2 22 2wi H u i w    : 

  2 2 21 0w Ti i i     . (2.3) 

The last expression in combination with isentropic process equation from 

point 1 with parameters 11, iP  and the value of the relative velocity 

      * *

1 1 1 1, , ,w w TS P i S P i S P i  . (2.4) 
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allows to come, deleting from (2.3), for example Ti , to the following process 

equation with unknowns P, i: 

    2 * * *

1 12

1
, 1 , 0w w wS P i i S P i


 
      

 
. (2.5) 

With the help of the equation (2.5) can be solved a number of problems 

related to the thermal calculations of stages, which statement depends on which 

parameter of the unknown is a given. If we assume a known specific enthalpy i 

at the end of expansion, we obtain the equation (2.5) relative to the pressure P. 

This problem arises, for example, based on a predetermined degree of reaction 

or determining the counter pressure by the theoretical enthalpy drop per stage. 

Solution of equations of the form (2.5) with one unknown is carried out by 

means of minimizing the residual square using one-dimensional search of 

extreme. 

2.2  Aerodynamic Models 

2.2.1  Axisymmetric Flow in the Axial Turbine Stage 

Assume that in the flow path of the turbine: 

 the flow is steady relatively to the impeller, rotating at a constant angular 

velocity ω about the z-axis or stationary guide vanes. 

 the fluid is compressible, non-viscous and not thermally conductive, and 

the effect of viscous forces is taken into account in the form of heat 

recovery in the energy and the process equations, i.e., friction losses are 

accounted energetically. 

 if the working fluid is real (wet steam) it is considered the equilibrium 

process of expansion. 
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 the flow is axisymmetric, i.e., its parameters are independent of the 

circumferential coordinate. 

Under these assumptions the system of equations describing the steady 

axisymmetric compressible flow motion, includes: 

1. The equation of motion in the relative coordinate system in the Crocco 

form 

 2W W W T S H F f            , (2.6) 

where 
2 2 22 2 2 uH i w u i c uc       – rothalpy; F  – blade force; 

 2
,

T
f W W S

w
    – friction force. 

2. Continuity equation 

   0W  , (2.7) 

where   – blockage factor. 

3. The equation of the process or system of equations describing the process 

 
  

 

2 2 21 2 0;

, 0.

T

in T T

H u i i

S S P i

       


  

 (2.8) 

4. The equations of state 

      , ; , ; ,T T P i P i S S P i    . (2.9) 

5. The equation of the flow surface 

  , 0W n  , (2.10) 

where n  – normal to the 2S  surface (Fig. 2.1). 
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6. The equation of blade force orthogonality to the flow surface 

 , 0n F    . (2.11) 

Projections of the vortex in the relative motion rot W W  to be 

determined by the formulas: 

 

Figure 2.1  The surfaces of the three-dimensional flow, relative  

flow angles and velocity components. 
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  
   

    

 (2.12) 

Taking into account (2.12), projection of the equation of motion (2.6) on the 

axes of cylindrical coordinate system can be written as follows: 

S1 

u 

z 

r 

r 
 

z = const 
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z wz 
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ws 

 = const 
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
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 on the r axis (radial equilibrium equation) 

 
 

2
uu r z

z u r r

rww w w S H
w w T F f

r r z z r r


     
        

     
; (2.13) 

 on the u axis: 

 
 

2
u ur

z r u u

rw ww
w w F f

r r z


 
   

 
; (2.14) 

 instead of the projection on the z axis will use energy conservation 

equation: 

 0
H

s





. (2.15) 

The components of the relative velocity based on the designated flow angles 

(Fig. 2.1) can be written as 

 

cos sin cos ;

ctg cos ;

sin sin sin .

z s

u s

r s

w w w

w w w

w w w

  

 

  

  


  
  

 (2.16) 

From the relation , 0n F     will have: 

; ;r u u r z u u z z r r zn F n F n F n F n F n F   . 

We express the ratio of the normals projections through the flow angles    

(Fig. 2.2): 

tg ; tg ; tgr z z
p

u r u

n n n
c

n n n
       . 

Than we can write 

 tg ; tg ; tgr u z r z p uF F F F F c F        . (2.17) 
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Figure 2.2  The normal projections to the 2S  surface. 

Transforming the radial equilibrium equation 

Using the relationship between the coordinates z, r and s, r in the meridian 

plane 
1

sin
cosz s r




   
  

   
, and the ratio (2.16), the second term of the 

equation of radial equilibrium (2.13) can be converted 

 2 ln ln
cos sin s sr z

z s

w ww w
w w

z r s r
 

     
       

      
. (2.18) 

where s    – the curvature of the meridian stream line. 

To determine the ln sw s   member use the continuity equation for an 

axisymmetric flow: 
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0
r zr w r w
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 
; (2.19) 

which by means of (2.16) and the connecting relations between the cylindrical 

system of coordinates z, r and the coordinates of s, n in the natural grid (stream 

line s in the meridian plane and normal to it n) 
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cos sin , sin cos
z s n r s n

   
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   

     
 

transformed into 

 ln 0sr w
n s


 

 
 

 
. 

The last expression, in turn, by shifting from the coordinates s, n to 

coordinates s, r is represented as: 

 
 tg lncos ln ln

tg 0s
r w

r r s s s

  


  
    

   
, (2.20) 

since 

1 1
sin tg

cos cosn r s r

   
 

 

    
        

. 

To determine the ln s   member, engage the energy equation (2.15), 

where, according to (2.6) and Fig. 2.1 

2 22

const
2 2 2

u s
u u

c wc
H i uc i uc        . 

Then we have 

 
   2 lnu us u

s u

uc ucw ci c i
c w c

s s s s s s s

    
     

      
. (2.21) 

The expression for i s   defined differently depending on whether we are 

dealing with an ideal or a real working fluid. 

The first term of (2.13) with (2.16), as well as Fig. 2.1 can be written as: 
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Radial equilibrium equation (2.13) can now be converted to the form: 

 for a given cur (inverse problem): 

2 ln ln
cos sin s s

s

w w
w

s r
 

  
    
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; (2.22) 

 in the gap between vanes (free channel): 

2 ln ln
cos sin s s

s

w w
w

s r
 

  
    

  
 

 
 2

2

uu
c rc r r S H

T
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; (2.23) 

 for a given : 

 
2 2

2 2ln lnctg 1 ctg
cos sin 1 ctg

2

s s
s

w w
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 
  
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 2 ctgs r r

S H
w T F f

r r
 

 
    

 
. (2.24) 

The projection of the equation of motion in the circumferential direction 

Let us now consider the projection of the equation of motion (2.6) in the 

circumferential direction (2.14). Using (2.16), and the relationship between the 

coordinates z, r and s, r in the meridian plane 

1
sin

cosz s r




   
  
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, 
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equation (2.14) becomes: 

 for a given cur (inverse problem): 

 
 us

u u

c rw
F f

r s


 


; (2.25) 

 in the gap between vanes (free channel): 

 
 

0
uc r

s





; (2.26) 

 for a given : 

 2 lnsin ctg ctg
ctg 2 sins

u s s u

w
F w w f

r s s

  
  

 
       

. (2.27) 

These equations enable us to determine the projection of the blade force uF  

in the circumferential direction. The radial component rF  is expressed through 

the circumferential according to (2.17). 

The projections of the friction force on the coordinate axes 

The expression for the friction force  2
,

T
f W W S

w
    can be transformed 

by using the expression (2.16) and the binding ratio between the cylindrical 

coordinates z, r and the coordinates s, r: 

 sin
W S

f T
w s




 


, (2.28) 

whence we get the projection of the friction force on the coordinate axes: 

2sin sin ; sin cosr u

S S
f T f T

s s
   

 
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 
. 

The continuity equation is advisable to use in a form 
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2
s

dG
d r w dn  


  , 

or, using the obvious relation cosdn dr   (Fig. 2.3), we have: 

 cossr w
r


  





. (2.29) 

If the working fluid can be considered as ideal gas, for which the equations of 

the state and of the process are simple expressions, using the equation [8] 

1 1 constk ki    , we obtain 

 2 ln lni
a

s s s

    
  

   
, (2.30) 

where  2 1a k i kRT    – local sound velocity square. 

Substituting (2.30) into (2.21), solving (2.21) and (2.20) as a system of linear 

equations with unknowns ln sw s   and ln s  , we obtain for a given uc r : 

 
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


 
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 
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. (2.31) 

Note that 

 
  2
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uu u u

u

c rc c c
c

s r s r



 

 
, (2.32) 

since sin , Ms sr s w a    . 



◆◇     Chapter 2  Mathematical Modelling of the Turbomachine Flow Path Elements     ◇◆ 
 

http://www.sciencepublishinggroup.com 61 

 

Figure 2.3  Axial turbine stage meridian projection. Symbols used  

in the simplified stage calculation procedure. 

For a free channel from the projection of the equation of motion in the 

absolute coordinate system to the circumferential direction, obtain, that the 

circulation constuc r   along the meridian streamline and   0uc r s   . 

Then for a free channel  1   from (2.31) we have: 
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. (2.33) 

2.2.2  Aerodynamic Calculation of the Axial Turbine Stage in Gaps 

The considered above in the general formulation, the problem of calculation 

of axisymmetric flows of a compressible fluid in the flow path of the axial 

turbine can be simplified and reduced to the calculation in gaps [9]. The flow in 

the axial gap is seen at the main proposals set out above. Within axial gap in the 

space free of the blades 1  ; because of its small length in the axial direction 
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the entropy S locally do not changes along the meridian streamlines                

(i.e. 0S s   ); it is possible to force components 0r rF f  ; stream keeps 

the direction of motion, telling him by blades (i.e., the angle of the flow  is set). 

In these assumptions the radial equilibrium equation will differ from (2.24) in 

the absence of the right side of rF  and rf : 

 
2 2

2 2ln lnctg 1 ctg
cos sin 1 ctg

2

s s
s

w w
w

s r r r

 
  

  
       

   
 

 2 ctg 0s

S H
w T

r r
 

 
   

 
. (2.34) 

From the energy equation (2.21), using (2.32), considering the fact that 1   

and along the stream lines   0uc r s    obtain 

 

2

tgln 1 cos
tg

ln
1

s

s

rw

s r r
w

P i




 

 
   

           

 

 
 

2

3

ln
sin

uc r S
T

r P i s P

  


    
    

     

. (2.35) 

Radial equilibrium equation (2.34), written about the speed w (that gets rid of 

the derivative 
2ctg r  ) by going to the new independent variable  by a 

ratio 

coss

d d
r w

dr d
 


 , 

takes the form 

2sin ctg 2 ctg
sin cos

cos sin

dw
B

d r r w

   
 

   

 
      

 
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1 dH dS

T
w d d 

 
  

 
. (2.36) 

The continuity equation can be represented as: 

 
1

sin cos

dr

d r w   
 . (2.37) 

Thus, flow in the gap of the turbine stage described by the system of two 

ordinary first order differential equations (2.36), (2.37) with the boundary 

conditions  0 hr r ,  *

tr r  . 

The values ln SB W s    are determined by (2.35), and the enthalpy – 

according to the equation energy 

2 2 2

const
2 2 2

u

w u c
H i i uc       . 

To calculate the temperature, density and entropy from the formulas (2.9) 

need to know other than the enthalpy i also pressure P, which for some w can be 

found from the second equation (2.8): 

 
2 2

2
,

2 2
in T

u w
S S P H



 
   

 
. (2.38) 

Consequently, the system of equations, describing the steam flow in the axial 

turbine stage gaps are as follows: 

 after the guide vanes: 
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 (2.39) 

where 

 * 2

1 1 1 0 1 1 1 1 1ln ; 2; ,sB w s i i c T T i P      ; 

      * * 2 2

1 1 1 1 1 1 1 1 0 1 1 0 1, ; , ; , 2Ti P S S i P S S P i c      . 

Boundary conditions 

 1 0 hr r ;  *

sr r  ; 

 after the rotor: 
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 (2.40) 

where 

 * 2 2

2 2 2 0 1 1 2 2 2 2 2 2ln ; 2 2; ,s uB w s i i u c u w T T i P        ; 

      * 2 2 * 2

2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2, ; , ; , 2 ; 2T w wi P S S i P S S P i w i i w        . 

Boundary conditions: 
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 2 20 hr r ;  *

2 2tr r  . 

The numerical realization of the stage thermal calculation problem 

Mathematical models of axial turbine stages, discussed above, allow their 

calculation by setting some additional (closing) relations, for example, the 

distribution of the angles  and  (direct problem), the quantities ,u zc r c , et 

al. (inverse problems). 

To solve the direct problem of stage calculation in gaps the following 

information is required: 

 form of the stage meridian contours, i.e. external and internal radii of axial 

sections; 

 rotor speed ; 

 stagnation parameters at the stage input 
*

0P  and 
*

0i ; 

 the geometrical characteristics of the blades: entry and exit angles, as well 

as blades count in the crowns, the chord, edge thickness and other 

parameters necessary for determining the velocity coefficients along the 

blade length; 

 if the velocity coefficients are predefined – their distribution along the 

blade length. 

 streamline slope angles  and their curvature  in fixed axial sections. 

There are varieties of the direct problem with a given flow rate G and with a 

specified back pressure 2P . Solution of the problem with a fixed flow easier 

because the integration of the equations (2.39), (2.40) is made for a known 

 * 2G   value and mathematically formulated as a two-point boundary 

value problem for a system of two ordinary first order differential equations of 

the form: 
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 (2.41) 

with boundary values:  0 hr r ;  *

tr r  . 

Right sides of equation (2.41) are calculated according to the formula of the 

system of equations (2.39), (2.40). 

The decision imposed positivity of w (unseparated flow condition). 

From physical considerations it is known that problem (2.41) can have either 

two solutions, corresponding sub- and supersonic flow mode, either one or do 

not have a solution. 

One way of solving the problem (2.41) is to reduce it to finding the root of 

the transcendental equation, which serves for the selection of the missing 

boundary condition at the hub  0 hw w . Indeed, setting a boundary condition 

hw  and integrating (2.41) as the Cauchy problem with the initial conditions 

 0 hr r ;  0 hw w , we obtain at 
*  an approximate value of the outer radius 

 *

tr r  . Considering tr  as a function hw  we obtain the equation with one 

unknown hw : 

   0h tr w r  . (2.42) 

Thus, for the solution of the direct problem of the stage calculation with a 

given flow rate is required to solve the system of transcendental equations: 

 
 

 

1 1 1

2 1 2 2

,

, .

t h t

t h h t

r c r

r c w r

 


 
. (2.43) 
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The solution of (2.43) is made in two stages: first, the first equation is solved 

and the distribution of the flow in fixed axial gap is found, then, knowing the 

parameters entering the impeller can solve the second equation. That is, the 

problem is reduced to determining the roots of the equation with one unknown 

for each of the two equations (2.43). For the calculation of the subsonic 

solutions of (2.43) can be successfully used the methods of nonlinear 

programming. The system (2.43) is solved by sequential minimization of 

residuals 

 
 

 

22

1 1 1 1

22

2 2 2 2

,

.

t h t

t h t

r c r

r w r





     


      

 (2.44) 

using one of the described one-dimensional extremum search methods. 

Solution of the problem with a given back pressure 2P  (flow rate unknown) 

is more complicated. To determine the unknown mass flow G to the system of 

equations (2.43) is necessary to add one more thing – a limit on the heat drop. 

In this formulation of the problem it seems appropriate to set the mass flow 

averaged pressure according to the formula 

 

*

*

2 2 . .

0

m defP d P



  . (2.45) 

In view of (2.45) to calculate the level with a given back pressure is needed to 

solve a system of three equations with three unknowns: 
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 (2.46) 

Numerically, the problem is solved to minimize the sum of squared residuals 
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* 2 2 2

0 1 2I       (2.47) 

on three variables 
*

1 2, ,h hc w   using one of the multidimensional extremum 

search methods. 

A maked up mathematical model describing the flow in the axial gaps of 

turbomachine (equation (2.39), (2.40)), allows the calculation of supersonic 

flow (including the transition through the speed of sound), which M 1s  , i.e., in 

the case of the meridional component of velocity less than the velocity of sound. 

Specified the conditions satisfy all existing stages of powerful steam turbines. 

Calculation of supersonic stages must be performed with a given back 

pressure, because otherwise does not provide a unique solution of the equation 

of the form (2.41). At the same time, the system of transcendental equations 

(2.46) in the variables 
*

1 2, ,h hc w   in contrast to (2.43) has a unique root. 

Another feature of the supersonic stages calculation is the need to consider 

the flow deflection in an oblique cut at Mach numbers higher than unity. For 

this purpose it is possible to use a method of determining the flow deflection 

angle in an oblique cut comprising in equating flow rate into the throat section 

and behind the blade [10, 11]. 

In this case, to calculate the residuals of equations (2.44), (2.46) it is 

necessary to integrate the system of ordinary differential equations of the form 

(2.41), namely (2.39), (2.40). These equations are due to the complexity of the 

form of the right sides in the general case can be integrated numerically. When 

integrating (2.39) (2.40) should be borne in mind that at each step of pressure 

shall be determined by solving the equations of the form (2.38), which greatly 

complicates the task. 
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Finally, we note that because of the existence of the right sides of (2.38), 

(2.40), a member T S   , the system, generally speaking, can not be 

considered as written in the form of Cauchy, as these non-linear supplements 

are some of the functions 2w  or 1c , r and their derivatives. When integrating 

these terms are determined by successive approximations. 

The important point is the choice of numerical methods for integrating 

systems of the form (2.41). Extensive experience in solving such problems 

suggests the possibility of partitioning the integration interval to a small number 

of steps (5–10). As a result of numerical experiments comparing different 

methods, preference was given to the modified Euler’s method [12], which has 

the second order of accuracy for the integration step. 

The leakage calculation is necessary to conduct together with a stage spatial 

calculation, the results of which are determined the parameters along a height in 

the calculation sections, including the meridian boundaries of the flow part. 

The stage capacity depends on the value of clearance (or leakages), in 

connection with which calculation of the main stream flow is made by mass 

flow amplification at fixed the initial parameters and counter-pressure on the 

mean radius, or with counter-pressure elaboration at fixed initial parameters and 

mass flow. 

The need for multiple steps in optimization problems requires a less       

labor-capacious, but well reflecting the true picture of the flow, methods of 

axisymmetric stage calculation. Its main point is to calculate the stage 

parameters in the axial gaps supplemented by the algorithm of stream lines 

slope and curvature refinement in the design sections. 

When calculating the stage taking into account leakage, the continuity 

equation is convenient to take the form: 
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 cossr w
r


  





, (2.48) 

where  – mass transfer coefficient, which allows to take into account changes 

in the amount of fluid passing through the crowns, and at the same time to solve 

a system of ordinary differential equations in sections in front of and behind the 

impeller like a constant mass flow rate. 

As shown, the calculation of spatial flow in the stage with the known in some 

approximation the shape of the stream lines is reduced to the solution in the 

sections 1 constz   and 2 constz   (Fig. 2.3) of a system of ordinary differential 

equations (2.39) and (2.40), where as independent variable a stream function  

is taken. Thus, the equations describing the flow in the axial gap, presented in 

the form of: 

 

Figure 2.4  Estimated distribution of the reaction degree in a series of  

stages with 19mD l 
 
[13]. 

 in the section after the guide vanes: 
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 (2.49) 
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 in the section after rotor: 
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 (2.50) 

The solution of the boundary problems (2.49), (2.50) for a given mass flow 

rate is reduced to finding the roots of the two independent transcendental 

equations (2.43) with respect to the hub velocities 1 2,h hc w . 

For a given backpressure to the number of defined values the mass flow 
*  

is added and the problem reduces to solving a system of three equations. As a 

third equation the stage heat drop constraint is added (2.45) that can be 

symbolically written as 

 *

1 2 0, , 0h hh c w h   . 

Systems of equations are solved using the methods of nonlinear programming. 

An approximate method of meridian stream lines form amplification using 

their coordinates in the three sections, is to construct an interpolation cubic 

spline at a given slopes at the flow path boundaries. In order to accelerate the 

convergence the stream line curvature is specified with lower relaxation. 

Previous calculations showed that the interpolation process converges with 

sufficient accuracy in 3…5 iterations. 

Mass flow rates through crowns carried out in parallel with the streamlines 

construction. The algorithm allows to solve the direct problem of the spatial stage 

calculation in the gaps in various statements, with given or variable in the process 
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of calculating the streamlines, velocity and flow coefficients of crowns, at various 

ways of flow angles distribution along the height, for a perfect gas or steam. 

 

Figure 2.5  Estimated () and experimental (----  ----) distribution of parameters  

in the M1 stage gaps 8.3mD l   [13]. 

 

Figure 2.6  Estimated () and experimental (----  ----) distribution of parameters in 

the P3 stage gaps 8.3mD l   [13]:  •  –calculation of cylindrical theory. 

The algorithm was tested by comparing the calculation results with the exact 

solutions, as well as with the experimental data obtained for a large number of 

stages of the experimental air turbines in the turbine department of NTU "KhPI" 

[13–14, 15]. The results of calculations and experiments illustrated in             

Fig. 2.4–2.12. It should be stated a good calculations agreement with the 

experimental result for the various stages of the different elongation, meridian 

shape contours, twist laws and the reaction degree at the mean radius. 



◆◇     Chapter 2  Mathematical Modelling of the Turbomachine Flow Path Elements     ◇◆ 
 

http://www.sciencepublishinggroup.com 73 

The greatest difficulty to calculate present stages with the steep opening of 

the flow path (Fig. 2.12), and the cylindrical stages with inversely twisted guide 

vanes (Fig. 2.4, 2.6–2.8). 

 

Figure 2.7  Estimated () and experimental (----  ----) distribution of parameters in 

the stage 41 gaps with 5.13mD l   [13];  •  – calculation of cylindrical theory. 

The calculation of stages with inverse twist using the proposed method 

allows to obtain a valid gradient of reaction degree and circumferential velocity 

component of the stage, while the calculation provided in assumption of 

cylindrical flow gives results that differ significantly from the experimental data 

(Fig. 2.6–2.8). The technique allows to take into account also the effect of the 

law of the impeller’s twist on the distribution of parameters in the gap between 

guide vane and rotor. This is evidenced by the comparison stages 41 and 42    

(Fig. 2.7, 2.8) with the same nozzle unit, the first of which has a cylindrical 

impeller, and the second – twisted by constant circulation law. 
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Figure 2.8  Estimated () and experimental (----  ----) distribution of parameters in 

the stage 42 gaps 5.13mD l   [13];  •  – calculation of cylindrical theory. 

 

Figure 2.9  Estimated () and experimental (----  ----) distribution of parameters in 

the stage 32 gaps 5.13mD l   [13]. 
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Figure 2.10  Estimated () and experimental (----  ----) distribution of parameters 

in the stage I gaps 3.6mD l   (the author’s tests). 

 

Figure 2.11  Estimated () and experimental (----  ----) distribution of parameters 

in the stage gaps II 3.6mD l   (the author’s tests). 
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Figure 2.12  Estimated () and experimental (----  ----) distribution of parameters 

in the stage 33 gaps 3.2mD l   [13];  •  – full axisymmetric statement calculation. 

2.2.3  Off-Design Calculation of Multi-Stage Steam Turbine  

Flow Path 

Formulation of the problem 

The off-design analysis problem is to determine the gas-dynamic 

characteristics derived from the design calculation such as the size of the flow 

path (FP) and the parameters that determine the long-term (steady) operation of 

the turbine. The need to analyze FP off-design modes arises when assessing 

aero- and thermodynamic, power, strength parameters of the turbine in extreme 

operating conditions, the choice of method for control and calculation of steam 

distribution, for turbines designed to operate at changing the regime parameters 

(speed, unregulated steam extraction and so on). 

The specifics of these problems requires a gas-dynamic calculations in a 

direct statement, which is more labor intensive than the calculations commonly 
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used in the design stage. In connection with this methods designed for use with 

a computer optimization procedures must meet several requirements: 

 to base on the equations of motion of a real working fluid in the flow path 

of the multi-stage turbine; 

 to consider with the required accuracy the influence of geometrical and 

operational parameters on the loss factors of the FP elements; 

 to allow to conduct calculations with varying from section to section the 

mass flow rates; 

 to be highly reliable and economical in terms of consumption of computer 

resources, i.e. make it possible to carry out multi-variant and optimization 

calculations. 

To calculate high, medium and, to a lesser extent, the low-pressure parts of 

powerful steam turbines, justified the use of one-dimensional gas dynamics 

calculations using the simplified radial equilibrium equations in a axial 

clearance, the leaks balance at the root of the diaphragm design stages and the 

calculation method of the FP moisture separation. Accounting for the loss of 

kinetic energy and efficiency assessment should be carried out by successive 

approximations based on the current results of the gas-dynamic calculation and 

empirical relationships, and reliability of the results – achieved by comparison 

with experimental results and the introduction of necessary adjustments. 

Should be regarded as a satisfactory the accuracy of coincidence of calculated 

and experimental values of the relative losses in the range of 5…7% for FP made 

with straight or twisted by constant circulation law blading in the absence of the 

sharp curvature of the meridian contours. When the actual loss levels of 10...30% 

error in determining the efficiency, thus lies in the range of 0.5...2% [15]. 
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Method of calculation 

One-dimensional steady-state equilibrium adiabatic motion of water vapor in 

the flow path in a coordinate system rotating with angular velocity , sought a 

system of equations: 

 energy 

 
2 2

2

w u
H i


  ; (2.51) 

 continuity 

 
zG F w ; (2.52) 

 process 

  2 *

0 2

1
, 1 0wS S P i i


 
      

 
; (2.53) 

 state 

          , ; , ; , ; , ; ,T T P i p i S S p i P P i S i i P S      ; (2.54) 

 flow kinematic parameters relations. 

The solution to this system of equations for an isolated axial turbine stage in 

a direct statement requires: 

 stage input enthalpy 
*

0i ; 

 stage output pressure 2defP ; 

 angular rotational speed ; 

 mean diameters of sections 
1 2,m mD D  and blade lengths 

1 2,l l ; 

 cascade’s output effective angles 
1 2,e e  ; 
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 data to estimate blades velocity factors: chords, number of blades, edge 

thickness, geometry entry angles so on; 

 the data for the calculation of additional energy losses, such as the types 

of seals and their sizes, the values of axial and radial clearances, the 

number of bonding wires, etc. 

The two main statements involve mass flow 
0G  determination at certain 

stagnated pressure *

0P  at stage inlet, or the *

0P  definition at known flow rate. It 

is also possible the solution of the problem with given at the same time 
0G  and 

*

0P  changing angles 
1e  or 

2e , in particular, makes it possible to simulate the 

nozzle assembly with rotary blades. In all cases, subject to the definition of the 

flow speed 
1c  and 

2w . 

For definiteness we shall consider the problem with fixed *

0P  and mass flow 

determination. We transform the equation of continuity (2.52) for the nozzle in 

view of (2.51), (2.53), (2.54): 

  
2 2

* * * * *1 1
1 0 0 0 0 0 1 1 12

, , , sin
2 2

c c
G P i S P i i c F 



  
     

  
 (2.55) 

with unknown 
1c  and G. 

Similarly, after the impeller 

  
2 2 2 2

2 2 2 2
2 1 1 2 2 22

, , , sin
2 2 2 2

u w u w
G P H S P i H w F 



  
       

  
, (2.56) 

where 

2

1
1 1

2
u

c
H i u c   ; 

2
* *1

1 0 02
,

2

c
P P i S



 
  

 
; 

2
* 1

1 0
2

c
i i  . 
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This equation contains the unknown
1c , G, 

2w . 

Under 
1  and 

2  at subsonic flow understood the cascade’s effective angles, 

and at supersonic – flow angles in the oblique cut-off by the Ber formula. 

The third equation is: 

  
2 2

2 2
1 1 22

, ,
2 2

def

u w
P H S P i P



 
   

 
. (2.57) 

Under certain velocity factors  and  to determine the unknown 
1c , G, 

2w , 

there are three equations (2.55)–(2.57), which in general terms be written as 

follows: 

 

 

 

 

1 1

2 1 2

1 2

, 0;

, , 0;

, , 0.

g G c

g G c w

h G c w

 


 


 

 (2.58) 

The system (2.58) is solved numerically by minimizing the sum of squared 

residuals 
2 2 2

1 2g g h   using the conjugate gradient method. 

Calculation of multistage flow path does not differ systematically from the 

stage calculation. An equation of (2.58) is written for each of the stages, which 

leads to a system of the form 

 

 

 
 

1 1 1 1 2 1 2 2

2 1 1 1 2 2 1

1 11 2 21

, , , , , , . 0;

, , , , , , . 0, 1, , ;

, , , , , , 0,

j j j j j

j j j j j

n n

g G c c w w

g G c c w w j n

h G c c w w

  

 





  


 

 (2.59) 

where j – stage index; n – number of stages in the FP. 

The numerical solution is carried out by minimizing the function 
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 2 2 2

1 2

1

n

j j

j

g g h


   

by 2 1n  unknowns  1 2, , 1, , ,j jc w j n G . 

Sections may have different mass flows because of the leaks, district heating 

or regenerative steam extraction, moisture separation and so on. In the equations 

(2.59) in this case instead of a mass flow rate G in the relevant sections should 

take the current value 

1k k kG G G  , 

where kG  – given or confirmed in iterations the mass flow change in the 

transition from  1k  section to the k-th  1 2k n . 

The unknown is considered the 0G  mass flow at the FP entrance. 

After the solution of (2.58) or (2.59) all the parameters of the flow calculated, 

loss factors and the actual mass flows in sections adjusted. The required number 

of iterations is usually equal to 3...4. 

Kinetic energy loss determination 

Losses associated with the leakage of the working fluid are considered 

separately. The remaining components are divided into losses in cascade and 

auxiliary, which are allocable to the stage heat drop. 

Methods of assessing the losses in cascades based on research [8, 16] with a 

corresponding adjustment of empirical dependencies using test data about 

profiles used in the turbine building [17, 18]. 

Following [16], the loss factor in the cascade  2 21X     is the sum of 

the factors of profile 
pX  and secondary sX  losses, which are defined as 

follows: 
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Re Mp pb i iy t t yX X N N N N x x x      , (2.60) 

where 
pbX  – base profile loss; ReN  – Reynolds number correction; iN  –

incidence angle correction; 
iyN  – correction for the angle of attack associated 

with the elongation of the leading edge profile; ,t tN x  – trailing edge 

thickness corrections; Mx  – Mach number correction at M 1 ; 
yx  – 

correction due to the elongation of the input portion of the profile with a zero 

angle of attack. 

 
Res sb b lX X N N N , (2.61) 

where sbX  – base secondary loss; 
b lN  – relative blade height correction; N  – 

an amendment to the length of hanging visor. 

Corrections for the Reynolds number, angle of attack, the thickness of the 

trailing edge, at supersonic flow are taken over without change [19]. The 

amendment to the angle of attack in the profiles provided with an extension of 

the leading edge, is estimated according to experimental studies on the standard 

nozzle profiles and the impact of the extension on the profile loss – NPO CKTI 

the procedure [20]. 

The basic component of the profile 
pbX  obtained by a corresponding 

adjustment to the loss level of graphic dependence [16]. Basic secondary loss is 

determined by the corrected chart [16], an amendment to the ratio of the chord 

to the height of the blade 
b lN  – according to [16], and the coefficient N  taking 

into account the length of the visor hanging over the trailing edge of the blade – 

based on experimental data on nozzle standard profiles test data. 

When assessing the energy losses in the rotor blades, can be taken into 

account the effect of the periodic incident flow unsteadiness caused by the 
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presence of traces of the previous nozzle cascade, as amended 
N . The degree 

of non-uniformity of the incoming flow is taken over [8]. 

Additional energy losses are the disc friction and ventilation, extortion, 

humidity, the presence of the wire bonding and friction in the open and closed 

axial clearance in accordance with the guidelines [21]. 

Leak sand leakage losses calculation 

It is estimated that losses caused by leakage of the working fluid into the gaps 

of the flow path, associated with a decrease in the mass flow rate through the 

crowns, aerodynamic and thermodynamic mixing with the main flow losses, as 

well as the deviation of the kinematic parameters in the gaps comparing to the 

design. 

To determine the thermodynamic parameters near the flow path margins, 

needed to calculate the leaks mass flows, a simplified equation of radial 

equilibrium 
2

uc
P r

r


    is involved. In the gap between vanes considered that 

constuc r  , 1 const  , and behind the stage 2 constuc  , 2 const  . 

Leaks in the root area of multistage flow paths are the solution of the mass 

flow balance equations through diaphragm, root seals and discharge holes 

taking into account given dependences of the gaps flow factors and friction 

coefficients of the regime and geometrical parameters, changes in pressure and 

flow swirling in the disk chambers along the radius at the presence of the 

working fluid flow etc. 

Evaluation of leakages based on a calculation of the anterior chamber only, 

first, does not allow correct balance the mass flows along the FP, and secondly, 

may lead to considerable errors as the leakage values and axial forces, 

particularly at the off-design operation. 
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The algorithm is developed for the calculation of leakages in multistage FP, 

in which can be built leaks circuit within the cylinder based on the majority of 

the factors, influencing them [14]. Calculation of mixing the main flow with 

leaks through tip and root gaps is based on the balance equations for flow, 

enthalpy, and entropy. Raising the equations of motion for the evaluation of 

aerodynamic mixing losses allows, under certain assumptions, take into account 

the impact on the mixing loss of the blowing working fluid angle. 

The third group of losses factors, caused by leaks, mainly, through a change 

of velocity coefficient of cascades after gaps, where mixing occurs, due to 

variations of inlet flow angles. 

2.2.4  Simulation of Axisymmetric Flow in a Multi-Stage  

Axial Turbine 

To solve this problem, we used a combined one-dimensional and 

axisymmetric approach. 

A mathematical model of a coaxial flow of the working fluid in the flow part 

of a multi-stage axial turbine 

This model belongs to the class of quasi- two-dimensional models, and is a 

logical continuation of the one-dimensional model of the FP shown in 

subsection (2.2.3). All equations, methods and techniques of assessment of 

energy dissipation in the elements of FP used in the one-dimensional model, 

have been fully utilized in the development of quasi- two-dimensional model of 

the coaxial FP. 

A distinctive feature of the coaxial model is the fact that the system of 

equations (2.59) are determined not to cross-sections corresponding to the mean 

radius of the multistage FP crowns, and for each current streams along its 

midline. 
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The system of equations (2.59) in a coaxial FP model in a general form as 

follows: 

 

             

               

        

        

 

     
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












 (2.62) 

where m – is equal to increased by two the number given sections (streamlines) 

along the radius of the blades; j – number of cross-section along the blade 

height (the first cross section is located at the root level). 

Accordingly, the dimension of the system of equations in a mathematical 

model of a coaxial flow in the FP is equal to (n + 1)m. 

The marked increase in the number of sections required for a significant 

approaching of the root and near-the-tip stream lines to the root level and the 

peripheral area, respectively. With the same purpose the cross sectional area of 

the extreme stream lines assigned minimum values (1% of area of the 

corresponding vane). For the first iteration the remaining cross-sectional areas 

between the stream lines are equal and are determined as follows: 

     ,
0.98 2

k j k
S S m  , 

where  k
S  – cross-section area of k-th vane. 
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After determining the 
 ,k j

S  are determined the radii of mean lines of all flow 

streams, angular velocities and the values of all the geometric characteristics of 

the cascades at those radii. In subsequent iterations, the average radius of the 

stream lines, and all the characteristics of cascades and the working flow 

determined in accordance with the obtained distribution of the mass flow the 

radius of corresponding vanes. This ensures the equality of the working fluid 

(including the extractions and leakages) along the respective stream lines. 

Considering that the system of equations (2.62) is based on the one-

dimensional flow theory for each stream line, where there is no equation of 

radial equilibrium, it becomes apparent that the above-described method of 

stream tubes sizing, is most accurate by using this model, it will be possible to 

evaluate the characteristics of the axial turbines, which vane’s twist corresponds 

to the constuc r   law, or close to it. For practical tasks coaxial mathematical 

model is most suitable when assessing the characteristics of the high pressure 

cylinder (HPC) flow path. 

Despite the fact that the flow of working fluid along each stream tube in 

consideration of coaxial mathematical model of the FP is modeled in 

accordance with the one-dimensional theory, when calculating the flow 

kinematics the slope angles of each stream line are taken into account (curvature 

of the streamlines is not considered) and identifies all components of the flow 

velocity in axial gaps. To determine the angles of the middle line of the stream 

tubes cubic spline interpolation is used. A well-known feature of these splines is 

the coincidence of the first and second derivatives of the neighboring areas in 

the nodes of the spline coupling. It allows us to describe the midline of a stream 

line using dependence, which provides its most smooth shape. 

Because in the outer iteration loop of the multistage axial turbine FP coaxial 

mathematical model (as well as in the one-dimensional mathematical model of 
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the FP), the quantities of moisture separation, tip leakage and near-the-hub 

leakages and the working fluid extractions to the heating system and feed-water 

heating refer to the entire stage, and not to each stream tube, the question of 

adequate distribution of the marked mass flow changes between the stream 

tubes arise. 

In this case, there are two variants of distribution of leaks and the working 

fluid extractions between the stream tubes: 

1) The total change in the mass flow of the working fluid in the transition 

from one vane to another distributed between streams in proportion to their 

cross-section areas (1-st iteration). 

2) The distribution of mass flow changes in proportion to the stream tube 

mass flow, the size of which is determined from the condition that the mass 

flow of each stream tube in accordance with the law of the flow rate changing 

along the radius of the stage, obtained in the previous iteration. 

Additionally, there are also two versions of the distribution of secondary loss 

of height of the blade: 

1) The secondary losses are concentrated at the ends of the blades. 

2) The secondary losses are evenly distributed among all streams tubes 

(proportional to the mass stream tube mass flow). 

Integral indicators of each stage in the coaxial model are determined by the 

relationships below 
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 (2.63) 

where 
   0 , 1 ,

,
i j i j

g g  and 
 2 ,i j

g  – working fluid mass flows of the j-th stream 

tube entering the i-th stage and through its nozzle and working cascade, 

respectively; 
     , , ,

, ,
str i j i j i j

N h lu  – power, heat drop and disposable work of the 

j-th stream tube of i-th stage; 
     

2 2

, , ,
, ,

i j i j i j
    – the efficiency, the velocity 

coefficients squares of the nozzle and working cascades along the j-th stream 

tube of the i-th stage. Similarly other integral indicators of the axial turbine FP 

stages are determined. 

A mathematical model of an axisymmetric flow of the real working fluid in a 

multi-stage axial turbine FP 

Despite the fact that the coaxial mathematical model of the flow of the 

working fluid in the FP, as described in the previous section, has a fairly narrow 

range of independent use, yet it has a sufficiently high potential. If the 

formation of the transverse dimensions of the stream tubes to carry the light of 

the decision of the radial equilibrium equation (sections 2.2.1, 2.2.2), this model 

can be successfully used in the calculation of axisymmetric flow in a multi-

stage axial turbine FP with virtually any kind of its crowns twists. 

The use of coaxial FP model to evaluate the distribution of the static pressure 

behind the rotor blades to determine disposable heat drops of each stage that you 
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need to solve the axisymmetric problem "with a given back pressure". It is known 

that only in such a setting is possible to find the correct solution to supersonic 

stages. Marked problems for each crown of multi-stage flow path solved by the 

means of stream line curvature method. Thus, in view of (2.46) and the system of 

equations (2.62), the scheme for solving the problem "with a specified back 

pressure" for a multi-stage axial flow turbine parts will be as follows: 

 Using a coaxial FP model made an initial assessment of the static pressure 

distribution along the radius of the stages working crowns. 

 Relations obtained according to the static pressure of the stages as the 

boundary conditions are transferred to the axisymmetric simulation unit 

(sections 2.2.1, 2.2.2).  

 As a result of solution of the boundary value problems (2.49) and (2.50), 

for each stage the distributions of the mass flow of the working fluid along 

the nozzle and working crowns radii for all FP stages are formed. 

 The resulting distributions of the mass flow of the working fluid along the 

radii of the crowns are used to determine the average of the radii of new 

stream tubes and areas of cross-sections for the coaxial FP model. 

 Calculation of coaxial FP model with the new values of the transverse 

dimensions of the stream tubes is performed. 

For clarity, the above-described sequence of solving axisymmetric problem 

"with a given back pressure" for multi-stage FP is shown in Fig. 2.13. 

Consider some features of the numerical solution of axisymmetric problem 

for multi-stage FP. First, in dealing with this problem it is necessary to 

determine the parameters of the working fluid along the streamlines for multi-

stage FP with variable from crown to crown mass flow of the working fluid. 

The marked change often occurs in the steam turbines FP, where the extraction 
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of the working fluid is carried out between the stages, for example, for the feed 

water heating or a heat supply needs. 

 

 

Figure 2.13  A block diagram of a multistage axial turbine FP axisymmetric  

problem solving with coaxial models. 
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stages to the axisymmetric modelling block 
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Considering that the equations (2.49) and (2.50), describing axisymmetric 

flow, valid for one stream line with a constant stream function along it, which 

value for the single-stage and multi-stage FP without extraction of the working 

fluid varies from 0   to  0 2G  , there is a need to adjust the 

definition of the stream function with the extraction of the working fluid. 

In this case, the most appropriate is the idea lies in the fact that the maximum 

value of the stream function for all crowns drive must be the same. With this in 

mind, is quite clear the *  definition 

 
 

 

0*

0

1

2 2

i

i

G
G

 

 
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 

. (2.64) 

Thus, for the solution of (2.49) and (2.50), the boundary conditions for nozzle 

and the rotor in this case will be as follows: 
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 (2.65) 

Numerical integration of the equations (2.49), (2.50) is carried out by the 

Runge-Kutta third order accuracy method. The algorithm for determining 

streams tubes mean radii and their cross-sectional areas described below. 

Using dependencies  1 1r r   and  2 2r r  , as result of two-point 

boundary value problems for nozzle and rotor solutions, define, first of all, the 

root and tip stream tubes sizes. We assume that the mass flow through the 

stream tubes will be equal to 1% of the flow through the respective vanes. In 

this case, the current value of the  function for the mean line of the root stream 

tube will be equal to 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

92  http://www.sciencepublishinggroup.com 

 
*

1

0.005
0.005

2
 


   , (2.66) 

and for tip stream tube, respectively, 

 
*

1

0.995

2
m  


   . (2.67) 

Using linear interpolation algorithms on the received values of the stream 

functions corresponding to the utmost stream tubes mean lines, determine their 

radii. For other stream tubes the values of the stream functions and the mean 

line radii will be defined similarly by condition of equal mass flow rates for all 

stream tubes, which values are determined from the following relationship: 

 
     ,

0.98 2
i j i

g g m  . (2.68) 

As the result of boundary problems solutions (2.49) and (2.50), the mean 

radii of stream tubes for all the crowns of multistage FP are transmitted to the 

coaxial model, where for the new stream tube’s cross-sectional areas, angular 

velocities, and all the geometric characteristics of the nozzle and working blades, 

the FP calculation is carried out and the new static pressure distribution after 

working stages crowns is determined. 

The FP calculation results using the algorithm corresponding to the coaxial 

model again transferred to the block of boundary problems solutions (2.49) and 

(2.50). Described iterative process continues as long as the results of the 

calculation for both FP calculation algorithms differ less than a prescribed 

accuracy. Thus, the FP coaxial model and boundary value problems (2.49) and 

(2.50) complement each other in solving the axisymmetric problem, eliminating 

the "alignment" on the results of the one-dimensional calculation and more 

adequately assess the value of disposable heat drop of FP stages. 

It should be noted that the numerical implementation of the axisymmetric 

mathematical model of the working fluid flow in the FP in the form of alternate 
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use of coaxial mathematical model and boundary problems, can with a high 

degree of adequacy and accuracy to model the processes in the FP with stages 

with relatively long blades and having a twisted crowns substantially different 

from the law constrcu . As an example, in Fig. 2.14 are shown the shape of 

the flow lines resulting from the calculation of LPC FP of powerful steam 

turbine using the above axisymmetric mathematical model. 

 

Figure 2.14  Stream lines of the flow in the powerful steam turbine LPC FP. 

2.2.5  Cascades Flow Calculation 

For the design of high efficiency axial flow turbines flow path it is important 

to have accurate, reliable and fast method for calculation of cascade flow and 

friction loss on the profile surfaces. 

In the calculation of subsonic flows of an ideal liquid in the cascades long 

used an approach based on the reduction of partial differential equations to 

Fredholm integral equation of the 1-st or 2-nd kind [8, 22]. Available numerical 

implementation of solutions to these equations are facing a number of problems 
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that do not allow a sufficient degree of reliability or accuracy of the calculated 

arbitrary configuration cascades. 

For example, for a long time, we used the method of calculation [22] reduces 

to the solution of the integral equation of the second kind with respect to the 

speed potential. It is possible to solve a number of important practical problems 

of cascade optimization, but had important shortcomings: the complexity of the 

integral equation kernel normalization, which led to difficulties in calculating 

thin and strongly curved profiles, as well as the need for numerical 

differentiation calculated potentials, which brings an additional error in the 

profile velocity distribution. 

Later, we developed a method for cascades potential flow numerical 

calculating with an approximate view of the ideal gas compressibility based on 

the solution of the Fredholm equation of the 2-nd kind with respect to speed on 

the rigid surface, and a program for the PC is designed to work interactively. 

Friction loss on the profile is carried out by calculating the compressible 

laminar, transitional and turbulent boundary layers using one-parameter 

Loitsiansky method [23]. To improve the accuracy of the results obtained on the 

basis of the recommendations given in the literature, calculated buckling points 

and end of the transition from laminar to turbulent boundary layer depending on 

the pressure gradient, the degree of free-stream turbulence and of profile surface 

roughness. 

The developed algorithms for an ideal fluid flow calculation in the cascade 

and the boundary layer on the surface of the profile give a good qualitative and 

quantitative agreement between the calculated and experimental data for 

different types of cascades at different inlet angles, relative pitch, Mach and 

Reynolds numbers, characterized by high speed and are therefore suitable for 

use in problems of optimizing the axial turbomachinery blades shape. 



◆◇     Chapter 2  Mathematical Modelling of the Turbomachine Flow Path Elements     ◇◆ 
 

http://www.sciencepublishinggroup.com 95 

2.2.6  Computational Fluid Dynamics Methods 

Aerodynamic optimization of turbine cascades is directed search a large 

number (hundreds to thousands) variants for their geometry, which increases 

with the number of variable parameters. The most reliable source of objective 

data on the flow of gas in a turbine cascade – physical experiment – obviously 

can not provide a sufficiently deep extreme. 

Therefore, currently in the works for aerodynamic optimization it is the most 

popular approach in which to obtain data on the nature and parameters of the 

flow of the working fluid in the tested inter-blade channels numerically solve 

the Navier-Stokes equations, or their modifications [24]. 

Navier-Stokes equations written in conservative form is as follows: 

 i i

i i

F GU
B

t x x

 
  

  
, (2.69) 
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. 

Since the analytical solution of this system of equations associated with 

insurmountable mathematical difficulties, such a direction as computational 

fluid dynamics (CFD) arose, which deals with the numerical solution of the 

Navier-Stokes equations. The numerical solution of the equations of fluid 

dynamics involves replacing the differential equations of discrete analogs. The 

main criteria for the quality of the sampling scheme are: stability, convergence, 

lack of nonphysical oscillations. Computational fluid dynamics is a separate 

discipline, distinct from theoretical and experimental fluid dynamics and 

complement them. It has its own methods, its own sphere of applications, and 

its own difficulties. 
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Given the speed of modern computers, the most appropriate approach is 

based on a system of Reynolds-averaged Navier-Stokes (RANS) equations. It 

involves some additional turbulence modeling using some complimentary to the 

system (2.69) equations, which are called turbulence model. 

The reliability obtained by the CFD results requires a separate analysis. As an 

example, compare the results of experimental studies of stages with 3.6D l   

(Fig. 2.15–2.17) with the calculations in one-dimensional, axisym-metric (for 

gaps) and 3D CFD statements [19]. 

Table 2.1  Main parameters of the test stages. 

Parameter Value 

Stage design MI MII 

Inlet pressure, Pa 117000 130000 

Inlet temperature, K 373 373 

Outlet pressure, Pa 100000 100000 

Rotation frequency, 1/s 7311 8212 

Nozzle vane mean diameter, m 0.2978 0.2978 

Nozzle vane length, m 0.0822 0.0822 

Blade mean diameter, m 0.2986 0.2986 

Blade length, m 0.0854 0.0854 

Nozzle vane outlet gauging angle near hub, deg. 20 17.2 

at mean radius, deg. 24 17.5 

at peripheral radius, deg. 28 17.8 

Blade outlet gauging angle near hub, deg. 32 41 

at mean radius, deg. 29.7 26 

at peripheral radius, deg. 26 19 
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a b 

Figure 2.15  Sketches of MI (left) and MII (right) stage design (a) and  

stage MI blades (b). 

 

 

Figure 2.16  Computation vs experiment (comparison for stage MI). 

Flow parameters distribution along nozzle vane and blade height: 

a – reaction; b – axial velocity component after nozzle vane; 

c – tangential velocity component after nozzle vane; d – nozzle vane velocity coefficient; 

e – blade exit flow angle in relative motion; f – axial velocity component after blade 
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Figure 2.17  Computation vs experiment (comparison for stage MII). 

Flow parameters distribution along nozzle vane and blade height: 

a – reaction; b – axial velocity component after nozzle vane; 

c – tangential velocity component after nozzle vane; d – nozzle vane velocity coefficient; 

e – blade exit flow angle in relative motion; 

f – axial velocity component after blade 
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Table 2.2  Comparison of stages MI and MII parameters at minimum radial clearance. 

Parameter 

Stage MI Stage MII 

2D 

AxSTREAM 

3D 

CFX 
Experiment 

2D 

AxSTREAM 

3D 

CFX 
Experiment 

 0 opt
u C  0.6 0.627 0.62 0.55 0.550 0.55 

, %s  3.5 4.0 2.7 4.9 5.2 3.1 

, %r  2.2 2.1 2.4 2.1 3.0 4.6 

, %out  10.8 13.9 11.9 6.8 9.0 7 

, %i  82.3 80.0 83 84.9 82.8 85.3 

It was shown that proper unidimensional and axisymmetric models combined 

with proven empiric methods of loss calculation provide the accuracy of the 

turbine flow path computation sufficient for optimization procedures in a bulk 

of practice valuable cases. Comparative analysis of the experiment and 

simulation results indicates an untimely nature of the assertion that 3D CFD 

analysis is already capable to substitute physical experiments. 

2.3  Geometric and Strength Model 

2.3.1  Statistical Evaluation of Geometric Characteristics of the 

Cascade Profiles 

For accurate estimates of the size of the blades, which takes into account not 

only their aerodynamic properties and conditions of safe operation, it is required 

to calculate the set of dependent geometric characteristics of the profiles (DGCP) 

as a function of a number of parameters that determine the shape of the profile. 

When the shape of the profiles is not yet known, to assess DGCP should use 

statistical relations. From the literature are known attempts to solve a similar 

problem [25, 26] on the basis of the regression analysis. 

The DGCP include: f  – area; 
eI  and 

nI  – minimum and maximum moments 

of inertia; 
uI  – moment of inertia about an axis passing through the center of 

gravity of the cross section parallel to the axis of rotation u;  – the angle 

between the central axis of the minimum moment of inertia and the axis u; 
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,gc gcX Y  – the coordinates of the center of gravity; 
i  – stagger angle; ,e ssl l  – 

the distance from the outermost points of the edges and suction side to the axis 

E; ,in outl l  – the distance from the outermost points of the edges to the axis N; 

, , ,e ss in outW W W W  – moments of profile resistance. 

The listed DGCP values most essentially dependent on the following 

independent parameters (IGCP) 1g  – geometric entry angle; 
2eff  – effective 

exit angle; b – chord; t b  – relative pitch; 
1 2,r r  – edges radii; 

1 2,   – wedge 

angles. 

Formal macromodelling techniques usage tends to reduce the IGCP number, 

taking into account only meaningful and independent parameters. In this case, 

you can exclude from consideration the magnitude of 
1 2 2, ,r r  , taking them 

equal 
1 0.03r b ; 

2 0.01r b ;  2 1 10.014 0.2K    , 1 3K  , 

depending on the type of profile [26]. 

We obtained basic statistical DGCP relationships using profiles class, designed 

on the basis of geometric quality criteria – a minimum of maximum curvature of 

high order power polynomials [15] involving the formal macromodelling 

technique. Approximation relations or formal macromodel (FMM) are obtained in 

the form of a complete quadratic polynomial of the form (1.2): 

   
1

0

1 1 1

n n n

i ii i i ij i j

i i j i

y q A A A q q A q q


   

     . 

The response function  y q  values (DGCP) corresponding to the points of a 

formal macromodelling method, calculated by the mathematical model of 

cascades profiling using geometric quality criteria. 
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Analysis of profiles used in turbine building reveals, that two of remaining 

four IGCP 1g  and t/b highly correlated. 

It is advisable to use in place of these factors their counterparts – the flow 

rotation angle in the cascade  and the parameter t t b T   , where 

1.08 0.004T    – linear regression equation that specifies the statistical 

relationship between the relative pitch and angle of rotation of the flow, the 

resulting data for typical turbine cascade. 

Thus, informal macromodelling as IGCP were taken:
2 1, , ,e t    , relatively 

in ranges 20…120, 10…30, 20…30, –0.2…0.2. In normalized form in the range 

of –1…1 the factors are calculated as follows: 

 2 1
1 2 3 4

20 2570
, , ,

50 10 5 0.2

e t
q q q q

   
    . (2.70) 

During macromodelling were designed 25 turbine cascades with 1b  and 

with IGCP values, corresponding to the points in the of numerical experiment 

plan, were calculated DGCP values and the dependencies on the form (1.2) built 

for them. Calculation of flow diagrams and loss factors confirms the high 

aerodynamic quality of the 25 profile cascades. 

In Tables 2.3, 2.4 the FMM coefficients and variance of the cascades DGCP 

FMM are given. In the tables FMM coefficients increased by 10
4
. 

Similar relationships were also obtained for a special class of nozzle profiles 

with an elongated front part [26]. 
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Table 2.3  DGCP macromodels coefficients. 

A(i, j)  ln F   ln eI   ln nI   ln uI   i
  

А(0) –26530 –87000 –53800 –64034 320 9010 

А(1) 4049.2 16769 4241.7 13055 –68.183 –3422.5 

А(2) –45 53.333 37.5 4423.8 –13.683 –1920.8 

А(3) 807.5 1200.8 579.17 727.58 –0.5833 –68.333 

А(4) –538.33 –1075 –228.33 –3982.6 83.917 726.67 

Table 2.3  DGCP macromodels coefficients (continuation). 

А(1, 1) 4716.7 6769.2 4024.2 6248.7 –162.02 –1454.6 

А(2, 2) 1207.9 2385.4 715.42 1000.2 4.7333 –342.08 

А(3, 3) 194.17 711.67 55.418 41.169 –15.867 81.666 

А(4, 4) –204.58 –542.08 –198.33 –1300.1 11.133 186.67 

А(1, 2) 562.5 602.5 690 –1472 –120.55 –567.5 

А(1, 3) 147.5 –367.5 175 148.5 25.25 –32.5 

А(1, 4) 572.5 1412.5 445 1584.8 30.25 –12.5 

А(2, 3) 342.5 552.5 180 53 21 –40 

А(2, 4) 810 2520 522.5 3917.8 –91.5 –400 

А(3, 4) –7.5 52.5 –2.5 –36.75 –2 12.5 

Table 2.4  DGCP macromodels coefficients (continuation). 

A(i, j) gcX  
gcY  

e
l  

ss
l  

in
l  

out
l  

А(0) 2927 5540 1371 882 3726 6090 

А(1) 1090.1 –213.75 1093.8 635.14 –63.5 165.75 

А(2) 976.42 –657.33 –25.508 –31.008 157.42 –99.667 

А(3) 49.417 2.0833 9.2333 47.708 –23.5 26 

А(4) –344.75 237.83 23.558 –32.825 –84.25 61.75 

А(1, 1) 433.04 –399.42 324.87 405.3 237.33 –207.75 

А(2, 2) 14.292 –135.04 93.692 142.72 –1.2918 –9.8752 

А(3, 3) –30.708 48.583 15.58 19.396 –5.668 9.8748 

А(4, 4) –65.958 34.958 –22.688 –29.929 20.042 18.5 

А(1, 2) –68.75 –500 4.275 51.4 227.5 –241.5 

А(1, 3) 19.5 4.75 31.05 29.6 –24.25 19 

А(1, 4) 38.5 118 61.825 61.375 –40.25 44.75 

А(2, 3) –5 –10 25.75 22.425 1.5 –3.5 

А(2, 4) 192 8.5 79 90.8 35.25 –13.5 

А(3, 4) –6.75 12 5 1.6 5.25 5 
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2.3.2  Strength Models 

On the choice of cascade’s optimal gas dynamic parameters significantly 

affect the strength limitations, which, in turn, is largely dependent on the flow 

path design. 

For example, the calculation of splitted diaphragms strength based on using a 

simplified scheme, according to which the diaphragm is considered as a      

semi-circle rod (band with a constant cross-section), loaded with unilateral 

uniform pressure and supported on the curved outer contour[27]. This approach 

allows us to evaluate the maximum stress in the diaphragm and is sufficient to 

assess the strength of the diaphragm at the stage of conceptual and technical 

design. 

Calculation of the blades strength is carried out using the beam theory that 

restrict computer time to evaluate the tensile and bending stress, for example, 

using statistical data on profiles, as shown in Section 2.3.1. 

To ensure the vibration reliability of blading, rotor blades requires detuning 

from resonance, i.e., the natural frequencies of the blades should not coincide 

with the frequency of the disturbing forces that are multiples of the frequency of 

rotation. The required for detuning dynamic (depending on rotation speed) the 

first natural frequency of the blade is defined by a simplified formula. 

2.4  Flow Path Elements Macromodelling 

Macromodels are dependencies of the "black box" type with a reduced 

number of internal relations. This is most convenient to create such dependence 

in the form of power polynomials. Obtaining formal macromodels (FMM) as a 

power polynomial based on the analysis of the results of numerical experiments 

conducted with the help of the original mathematical models (OMM). 

Therefore, the problem of formal macromodelling includes two subtasks: 
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1. The FMM structure determining. 

2. The numerical values of the FMM parameters (polynomial coefficients) 

finding. 

As is known, the accuracy of the polynomial and the region of its adequacy 

greatly depend on its structure and order. At the same time, obtaining polynomials 

of high degrees requires analysis of many variants of the investigated flow path 

elements, which leads to significant computer resources cost and complicates the 

process of calculating the coefficients of the polynomial. 

To create FMM it is advisable to use the mathematical apparatus of the 

design of experiment theory to significantly reduce the number of computing 

experiments with OMM, i.e. obtain sufficient information with a minimum 

dimension of the vector of observations Y  . We use two types of FMM – (1.2) 

and (1.12). To get them methods of the design of experiment theory applied 

(three-level Boxing-Benkin plans and saturated Rehtshafner’s plans) and cubic 

spline interpolation. 

In a particular implementation of a formal macromodelling methodology 

need to perform the following steps: 

1) the choice of the IMM of the flow path element; 

2) the appointment of its performance criteria; 

3) choice of OMM parameters, whose influence on performance criteria of 

the flow path element is necessary to study in detail and the formation on their 

basis vector of varied parameters Q ; 

4) macromodelling area appointment (ranges of components of the vector q


); 

5) DOE matrix formation; 
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6) active numerical experiments conducting and evaluation of the 

components of observations vector Y  for each criterion; 

7) the processing of the experimental results and the determination of the 

FMM coefficients. 

Steps 1–4 are not amenable to formalization and their implementation should 

take into account the specific features of macromodelling objects and existing 

experience of designing elements of axial turbines flow path. 

2.5  Thermal Cycles Modelling 

Imagine the process of analyzing the thermal cycle in the example of gas 

turbine unit (GTU) (Fig. 2.18) in the following sequence: 

 the structure diagram presentation as a set of standard elements and 

connections between them; 

 entering the input data on the elements; 

 generation of computer code in the internal programming language based 

on the chosen problem statement; 

 processing; 

 post-processing and analysis of results. 
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Figure 2.18  Thermal schemes graphical interactive editor window. 

This sequence of actions combines a high degree of automation of routine 

operations (input-output and storage of data, programming, presentation of the 

results of calculations, and so on) with the possibility of human intervention in 

the process of calculations at any stage (editing of data, changing the program 

code in the domestic language, writing additional custom code for non-standard 

calculations performing, etc.). 

A key element of the algorithm, allows it to compile a more or less broad 

class of configurations, is the stage of code generation, based on a graphic 

description of the scheme (a set of elements and relations between them), i.e., 

parsing. The problem is that it is pointless to try to solve the problem of the 

scheme calculation for the arbitrary, sometimes physically implemented 

schemes. Therefore, the goal of the analyzer is also identification of 

semantically incorrect scheme descriptions using heuristics embedded in it. 

The analyzer’s task is to draw up code for solving the system of algebraic 

equations that describe the problems of cycle analysis in one of the selected 

language. This system of equations must be linked to energy balances of 
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different types (for example, flows of working fluids or shafts power) and, 

therefore, from the graph scheme should provide specific elements chains and 

use them to make a chain of appropriate formulas. Code generation is based on 

the information on the scheme chosen by the parser from the internal data 

structures of elements and connections. 

This information includes, in particular, the total number of elements in the 

cycle, the number of elements of each type, chain elements attached to one shaft, 

the chain members having regard for air and gas. In addition, there is the total 

number of connections found and created a list of links with the types and 

numbers of adjacent elements, as well as the types of energy source. For the 

efficient operation of the analyzer is required to implement rather complex and 

flexible dynamic data structure to describe the types and implementation elements, 

links, as well as types and implementations of data elements and relationships. 

Cycle element is an object that is indivisible (in terms of the cycle calculation) 

for modeling processes of energy conversion and exchange or energy flows. In 

fact the element is quite complex and multifaceted structure which includes 

information about the external and the internal representation of its 

mathematical model, a set of data divided into input and output (and, depending 

on the type of problem to be solved), a list of associated interface functions etc. 

The cycle consists of elements and links between them. Cycle description is 

stored in a special text file format that contains data by elements, links and 

service information. Since a sufficiently large number of elements in the scheme, 

the appointment of links is time-consuming operation, which requires a lot of 

attention to the formation of the schema file, is desirable to have an interactive 

graphical schema editor, with which the elements and their relationship just 

"drawn" on the screen (Fig. 2.18). During the graphical information and 

elements data input the online preliminary control of the integrity and 

correctness of the scheme is performed. 
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Schema data includes collection of data of its elements and links that are 

relevant to the mathematical modeling of physical processes occurring in the 

cycle. In connection with this set of data is determined by the requirements of the 

codes, implementing these models – in our case – a "closed" to the user kernel. 

External modules available to the user (files of elements and schemes, interpreted 

code), when changed the set of data of a particular element, should be modified, 

preferably through means provided by the system or, in extreme cases, manually. 

The program of thermal schemes calculation organized in such a way that the 

graphical user interface and substantive part (solver) would be relatively 

independent of each other. This makes it possible, on the one hand, to use a 

solver as a standalone program or as part of other systems, and the other – to 

connect other solvers to the interface for pre- and post-processing. Therefore 

solver and interface program have independent data structures. 

Solver is a dynamic link library that provides a set of procedures, sufficient for 

data input and output, as well as organizing the process of setting up and solving 

the balance equations of thermal cycle. The interpreter has the ability to access 

these functions, and thus becomes a real calculation procedure described above. 

Mathematical modeling of cycles based on predetermined mathematical 

models of its constituent elements. This approach usually allows to simplify and 

speed up the calculations. Each of the circuit elements is a more or less 

complicated object, which can be described with varying degrees of detail. 

There are significant differences in the simulation of the elements in the 

schemes calculation at design and off-design operation modes. In the latter case, 

the properties of the elements are given as characteristics (maps), i.e. 

dependency of the output parameters of the regime one. In some cases the 

characteristics building (especially for the compressors) is a fairly                

time-consuming task. 
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3.1  Analytical Solutions 

An important objective in the design of a multi-stage axial turbine is to 

determine the optimal number of stages in the module and the distribution of 

heat drop between stages. 

Typically, a given quantity is the module’s heat drop, and should vary the 

number of stages and the rotational speed (diameter). It should be understood 

that the circumferential velocity reduction, and hence the diameters of the stages, 

reduces the disc friction losses, increase height of the blades (and therefore 

reduce the proportion of end losses), decrease the flow path leakage. At the 

same time it leads to an increase in the optimal number of stages, which causes 

an increase in losses due to discs friction and an additional amount of the 

turbine rotor elongation. Immediately aggravated questions of reliability and 

durability (the critical number of revolutions), materials consumption, increase 

cost of turbine production and power plant construction. 

A special place in the problem of the number of stages optimization is the 

correct assessment of the flow path shape influence, keeping its meridional 

disclosure in assessing losses in stages. As you know, the issue is most relevant 

for the powerful steam turbines LPC. It is therefore advisable for the problem of 

determining the optimal number of stages to be able to fix the form of the flow 

path for the LPC and at the same time to determine its optimal shape in the HPC 

and IPC. 

It should also be noted that the choice of the degree of reaction at the stages 

mean radius (the amount of heat drop also associated with it) must be carried 

out with a view to ensuring a positive value thereof at the root. Formulated in 

this section methods and algorithms: 
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 may serve as a basis for further improvement of the mathematical model 

and complexity of the problem with the accumulation of experience, 

methods and computer programs used in the algorithm to optimize the 

flow of the axial turbine; 

 allow the analysis of the influence of various factors on the optimal 

characteristics of the module, which gives reason for their widespread use 

in teaching purposes, the calculations for the understanding of the 

processes taking place in stages, to evaluate the impact of the various 

losses components on a stage operation; 

 allow to perform heat drop distribution between stages and to determine 

the optimal number of stages in a module within the modernization of the 

turbine, i.e. at fixed rotational speeds (diameters) and a given flow path 

shape or at the specified law or the axial velocity component change along 

the cylinder under consideration. 

A possible variant of the form setting of n stages group of the flow path can 

be carried out by taking the known axial and circumferential velocity 

components in all cross-sections, which the numbering will be carried out as 

shown in Fig. 3.1. 
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Figure 3.1  The sections numbering in the turbine flow part section,  

consisting of n stages. 

The axial velocity components we refer to the axial velocity at the entrance to 

the stages group: 

  0 , 1, 2jz jz zc K c j n  , (3.1) 

where jzK  – specified values. 

The shape of the flow path center line determined by the introduction of 

coefficient 

  0 , 1, 2jz jK u u j n  , (3.2) 

By satisfying the conditions (3.1), (3.2) after optimization using the 

continuity equation  0 0 0 , 1, 2z jz i jG c F c F j n     we can determine the 

shape of the flow path boundaries. 

Assuming that we know the initial parameters of the working fluid at the 

turbine module inlet and the outlet pressure, i.e. theoretical heat drop in the 

group of n stags is known. Thermal process in the group of stages with the help 

of hs-diagram is shown in the Fig. 3.2. 

Peripheral efficiency of the stages group determined by the formula 

Stage 1 Stage n Stage 2 Stage j 

3 2 1 0 4 2n – 2 2n 2n – 1 2j 2j – 1 2j – 2 

  

  
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   

1 1

*

0 0 2 ,

n n
j j

u u

j j

u

TT n

L L

H i i


 
 



 
 

or taking into account (3.1) and (3.2) in a dimensionless form according to the 

expression 

  2

0 0 2 1, 2 1, 2 1 2 , 2 , 2

1

2 ctg ctg
n

u z j u j z j j u j z j

j

c K K K K     



  , (3.3) 

where 
0 0 0u C  ; 

2

0 02C H ; 
0 0 0z zc c u . 

We take into account the loss in the blades by applying velocity coefficients 

 , , 1,j j j n   . Also, assume that the output of the intermediate stage a 

portion of the output energy may be lost. This fact will take into account by 

introducing a factor by which the output loss is defined as 
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Figure 3.2  The thermal process in the hs-diagram for the group of n stages. 
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by introducing a factor by which the output loss is defined as 

       
2

2
, 0 1; 1,

2

jj j j

out out out

c
h K K j n     , (3.4) 

Calculating losses in the guide vane and the rotor by formulas 

     
2 2 2 2

2 1 2

2 2

1 1
, , 1,

2 2

j j j jj j

s r

j j

c w
h h j n

 
 

 

 
    

taking into account the factor of heat recovery n , the limit for the heat drop in 

the group of n stages can be written as: 

           
21
2

3 0

1 1 1

1 0
2

n n n
j j j j n

n u s r out

j j j

c
A H L h h h   



  

          . (3.5) 

Dividing equation (3.5) by 
2
0u , taking into account (3.1), (3.2), as well as 

well-known kinematic correlations between velocity and flow angles after 

obvious transformations we obtain an expression for the limitation 3A  in the 

dimensionless form: 

 

   

    

3 0 2 1, 2 1, 2 1 2 , 2 , 2

1

2 2

2 2 2 2 2 2

2 1, 0 2 1 2 , 0 22 2
1

1
2 2 2 2

2 , 2 , 0 2 2 , 2 , 0 2

1

2 ctg ctg

1 1
1 ctg 1 ctg

2 ctg 1 ctg

n

z j u j z j j u j z j

j

n
j j

j z z j j z z j

j j j

n
j

j u j z z j j u out j z z j

j

A c K K K K

K c K c

K K c K K K c

 

 
 

 

 

  



 







  

        


    







 

  
 2 2 2

2 , 2 2

0

1
1 ctg 0

n

n z oz nK c






    . (3.6) 

The task of definition of the angles j  so that, given the parameters 

 0 0, , , , 1, 2z ju jzc K K j n   and taken on the basis of some considerations (or 

defined by one of the possible methods), the quantities of velocity coefficients 
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   , , , 1,
j

j j outK j n    reaches its objective function (3.3) maximum and 

satisfies the constraint (3.6). 

Mathematically the formulated problem reduces to finding: 

 

 1

ctg
0

max , 1, 2
j

n
j

u

j

u

L

j n
H




 


 

under the constraint (3.6). 

Using the penalty functions method, you can reduce the problem of finding 

the extremum in the presence of constraints to the problem without limitation 

for the attached objective function 

 
* 2

3uI A   , (3.7) 

where   – penalty coefficient. 
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Figure 3.3  The thermal process in hs-diagram for an intermediate j-th stage. 

Given the values of the velocity coefficients ,j j   along the module, 

solution of the problem is simplified due to the possibility of its decision by 

indefinite Lagrange multipliers method. Differentiating the Lagrange function 

by variables  ctg , 1, 2j j n   

 3uL A   , (3.8) 

where   – Lagrange multiplier, we find the following necessary optimality 

conditions 
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   

2

2 ,

0 22 2 2

0 2 ,

11 1 1
ctg , 1, 1

j zj j

out z j

j j j u

K
K c j n

K




   

  
       

  
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; (3.10) 

 
2 ,

0 22 2

0 2 ,

1 1
1 ctg

n z

z n

n n u

K
c

K


  

 
   

 
 

. (3.11) 

Expressing all  ctg 2j j n   through
2ctg n , and excluding   according 

to the third formula, we get: 

  
2

2 1, 2 ,

2 1 2

2 1, 0 2 ,

11
ctg ctg , 1,

j u n zn
j n

j j z z n u

K K
j n

K c K


 









 
   

 
 

; (3.12) 

   
2 2

2 , 2 ,

2 222
2 , 0 2 ,

1
ctg ctg , 1, 1

j u n zn j

j nj

j z j z n uj n out

K K
j n

K c KK

 
 

 

 
    

   

, 

Where 

2

2

2

1 j

j n

j


 




 ; 

2

2

2

1 j

j n

j


 




 . 

Substituting found in this manner 2 1ctg j   and 2ctg j  in the equation (3.6), 

we get the quadratic equation in the parameter 2ctg opt

n  

 
2

2 2ctg ctg 0opt opt

n nD E F    , (3.13) 

where 

 

2 2 22 1
2 , 2 1, 2 , 2

2 ,2 2
1 12 ,

n n
n z j u j uoz

n uj
j jn u n j j n out

K K Kc
D K

K K   




 

 
   
  
  ; 

 

2 21
2 , 2 1, 2 , 2

2 ,2 2
1 12 ,

2
n n

n z j u j uoz
n uj

j jn u n j j n out

K K Kc
E K

K K   




 

 
    
  
  ; 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

120  http://www.sciencepublishinggroup.com 

  

 

2 1
2 2 2 20
2 1, 2 , 2 ,2

1 1

2 21
2 ,2 2

2 1,2 4 22
1 1

2

2

2 , 2 2
1 0

1 1 1

1 1
.

n n
jz

j j z j z j n out n z

j jn

n n
j u n

n j u j
j jj n j nj n out

n
j n

j u

j j

c
F K K K K

K
K

K

K

  





    

 

 





 





 



 
     

 

  
           

 
 

 

 



 

Using the solution of this equation, then define all the optimal angles 

 ctg 1, 2 1opt

j j n    with (3.12), as well as optimal efficiency as a function of 

the set parameters with the help of (3.3). 

Consider the important special case when , , 1j u j zK K  ; 

   ; 1, 1
j

out outK K j n   ;  , , 1,j j j n      . In this case, the formula 

(3.12) will have the form 

 
 

 
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2

2 1 2

0

2
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1 1
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ctg
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j n
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


   
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  
  

 (3.14) 

Where 

2
2

2

1 
 




 . 

After the substitution of (3.14) into (3.6) we have a quadratic equation of the 

form (3.15) with the following values of the coefficients: 

 

2

0

2 2

1
1

1 1

z

out

c n n
D

K  

 
   

   
; 

 
0

2 2

1
2 1

1 1

z

out

c n n
E

K  

 
    

   
; 
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1 1 1 1 1z n
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            

 
, 

of which there is an optimal value 2ctg n , then  ctg 1, 2 1j j n    and from 

(3.13) the optimal efficiency 
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0 0 2
2

11 1
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1 1

out

u z n
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n K
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n K


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      
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, (3.15) 

optimal velocity ratios of the stages 
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
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2 1
1 ctg ctgz z
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c c 
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  


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
, (3.16) 

optimal reactions 

 
 

  

2 2 2 2

0 2 1

2 2 2

0 2 2

1 ctg

1 1 ctg 1

z j j

z j out j

c
R

c K

  
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



 

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 

. (3.17) 

If adopted above conditions, we see that all the stages except the last, are the 

same. The final stage is different from all that is connected with the need to 

reduce the exit velocity loss that is completely lost at this stage 
  1
n

outK  . 

Using formulas (3.14)–(3.17) for values 
2 0.96  , 

2 0.9   over a wide 

range 
0 zc  from 0.2 to 1.0 and 

outK  from 0 to 1 the calculations were carried out, 

the results of which at values 
0 0.4zc   and 0.1outK   are shown in Fig. 3.4. 
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Calculations have shown that for each value 
0 0u C  , i.e. heat drop for a 

given amount 
0H  at a fixed circumferential speed u, an optimum number of 

stages exists at which the maximum efficiency of the module is reached. 

 

Figure 3.4  The calculated optimal exit flow angles , velocity ratios  of intermediate 

and last stages, module efficiency  for different values of the heat drops  

(
0 0.4zc  , 

2 0.96  , 
2 0.9  , 0.1outK  ;  1, 1j n  ). The numbers on the curves 

indicate the number of stages in the module. The bold line shows the envelope of the 

parameters, corresponding to the maximum efficiency. 

Assuming full utilization of the output velocity of the intermediate stages 

 0outK   the rotor exit angles of the intermediate stages  2 j j n   can be 

very different from 90. 
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The last stage flow exit angle 
2n  in accordance with the calculation results 

must be done close to 90, which corresponds with a minimum loss of output 

velocity. Angles downstream of the guide vanes lie in the range 10...17, the 

optimum value of the velocity ratio in the range of 0.48...0.58. With increasing 

of number of stages in the module the range of acceptable changes of these 

values is narrowed. 

In the case of output velocity loss in the intermediate stages  0outK   the 

picture somewhat changes. Increases the value of the heat drop, in which it is 

advisable to go to a larger number of stages, angles downstream of the 

intermediate stages 2 j  are also close to 90. There is a decrease in the velocity 

ratio values j , the exit flow angles of the guide vanes 2 1j  , resulting in a 

slight drop in the optimum degree of reaction for the intermediate and for the 

last stages. 

In the case of a single stage, assuming n = 1 peripheral stage efficiency is 

given by 

1 1 2 2

*

0 0 2

u u u
u

TT

L u c u c

h i i



 


. 

From (3.3) we obtain in the dimensionless form 

  2

0 0 1 1 1 2 2 22 ctg ctgu z z u z u zc K K K K     . (3.18) 

For restrictions 1A , 2A  and 3A  from equations (3.13), (3.6) is written (see 

notation on Fig. 3.1): 
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1 0 1 1

* 2

2 0 2 2

* 2

3 0 2 2
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A i i L h h c 

   


     


       

. (3.19) 
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Drawing on the kinematic relations between velocities and flow angles, using 

the velocity triangles have 

 

2
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. (3.20) 
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0

1 1
0uK



 


   . (3.22) 

Here for convenience introduced a dimensionless ratio 

 
0

0

*

C

a
  , (3.23) 

where 
0C  – stage inlet velocity defined by zc0  and 0 ; 

*

* 0

1
2

1

k
a i

k





 – 

velocity, equivalent to the critical value, for the ideal working fluid. 

In the case of a perfect gas 
0  is a reduced velocity at the stage inlet. 

The stage optimization problem is solved using conjugate gradient method by 

maximizing the attached objective function 
* 2

3uI A   , where  – penalty 

coefficient. 
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In the case of fixed velocity ratios  and  from (3.12) we obtain the 

relationship between 1

opt  and 2

opt  analytically 

 
2

1 2
1 2

1 0 2

1 1
ctg ctgopt optu z

z z u

K K

K c K


 



 
  

 
, (3.24) 

where denoted 

2
2

2

1 
 




 . 

To determine the 
opt
2ctg  is needed to use the quadratic equation (3.13), 

which coefficients in the case of single stage are given by: 
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. 

The reaction degree R of single stage is given by: 
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 
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 


. (3.25) 

In the case where  and  are functions of flow parameters, for a single stage 

the solution of the problem of determining the optimal parameters can be 

simplified by using the method of successive approximations: 

1. Set the initial approximation ,  and define the parameters for the stage 

using derived formulas. 
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2. The velocity coefficients are recalculated according to the obtained 

parameters and calculations are renewed from the item 1. 

Calculations have shown that this process converges with high accuracy in a 

few iterations. 

To investigate the influence of dimensionless parameters on the optimum 

stage performance computational study was conducted under various 

assumptions about the loss in the stage. The velocity coefficients were taken 

into account as a constant or dependent of the flow parameters. In the latter case, 

their determination was made using simplified dependency [28] with a bit 

increased losses on the rotor blades: 

 

2
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2

2

1 0.025 1 ;
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1 0.040 1 .
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
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     
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      
     

. (3.26) 

The increase in losses on the rotor blades in the presence of negative degree 

of reaction produced artificially by the formula 
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 (3.27) 

The most complete calculations are made for the important special case when 

 1 1, 2jz juK K j   . 

Computational study has allowed to determine the optimal parametric 

dependencies of efficiency, angles 
1  and 

2 , reaction R, velocity coefficients 
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,  and loss factors , ,s r out    on 
0 zc  and 

0 . The calculation results are 

shown in Fig. 3.5–3.7. 

 

Figure 3.5  Optimal characteristics of the turbine stage (
2 0.96  , 

2 0.9  ).  

The numbers refer to zc0  values. Circles mark the optimal parameters  

at optimal heat drop in the stage. 
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Figure 3.6  Optimal characteristics of the turbine stage with velocity ratio, calculated 

by the formula (3.26). The numbers refer to 
0zc  values. Circles mark the optimal 

parameters at optimal heat drop in the stage. 
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Figure 3.7  Optimal characteristics of the turbine stage (,  calculated by the formula 

(3.26)) with  recalculated according to (3.27). The numbers refer to 
0zc  values. 

Circles mark the optimal parameters at optimal heat drop in the stage. 

3.2  Preliminary Design of the Multistage Axial Flow 

Turbine Method Description 

In the early stages of the flow path (FP) design of the turbine, when 

determined the diameter, the blade heights, heat drops and other main 
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characteristics of the stages, required to study alternatives with a view to the 

design solution, in the best sense of a quality criterion. 

Most effectively, this problem is solved within the created turbine flow path 

CAD systems, because manage: to achieve a rational division of the designer, 

defining the strategy and computer, quickly and accurately perform complex 

calculations and presents the results in human readable numeric or graphical 

form; to take into account many different factors influencing the efficiency, 

reliability, manufacturability, cost and other indicators of the quality of the 

design being created; organize dialogue or fully automatic determination of 

optimal parameters, etc [29]. 

Most methods of the multi-stage turbine parameters optimization is designed 

to select the number of gas-dynamic and geometric parameters on the basis of 

the known prototype, the characteristics of which are taken as the initial 

approximation. 

When using complex mathematical models, a large number of variables and 

constraints, the solution of such problems requires considerable computer time 

and for the purposes of CAD that require quick response of the system is often 

unacceptable. 

It is desirable to have a method of design that combines simplicity, reliability 

and speed of obtaining results with an accuracy of the mathematical model, a 

large number of factors taken into account and optimized, the depth of finding 

the optimal variant. This inevitably certain assumptions, the most important of 

which are: the synthesis parameters of "good", competitive structure without 

attracting accurate calculation models; in-depth analysis and refinement of the 

parameters are not taken into account at the first stage; optimization of the basic 

parameters by repeatedly performing the steps of the synthesis and analysis. 
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Design of the FP in such a formulation will be called preliminary (PD). PD 

does not claim to such a detailed optimization of parameters, as in the        

above-mentioned methods of optimal design. Its goal – to offer a workable, 

effective enough design, the characteristics of which, if necessary, can be 

selected as the initial approximation for more accurate calculations. 

Major challenges in creating a PD method are: 

 a rational approach to the problem of the preliminary design, the selection 

of the quality criteria and the constraints system; 

 development of a method for the multi-stage flow path basic parameters 

selection; 

 formation of requirements for a mathematical models complex describing 

different aspects of turbines and their efficient numerical implementation; 

 selection of the appropriate algorithm for finding the optimal solution; 

 a flexible software creation for a dialog based solution of the design 

problems in various statements and visual representation of the results. 

It is assumed that FP PD will be conducted immediately after the calculation 

of the turbine thermal cycle under known for each of the cylinders steam 

parameters * *

0 0,i P  at the inlet, the backpressures for modules 2 jP , mass flows jG  

 mod1, ,j n  and rotor frequency . 

The task is selecting the number of stages in the modules jn , root diameter 

hjD  and stages blades heights so as to achieve the maximum power of the 

cylinder, while ensuring reliability, manufacturability, or any other (material 

consumption, cost, size, etc.) pre-specified requirements. 

The minimum acceptable reliability limits regulated (including safety factors) 

by static stresses in the blades and diaphragms, as well as detuning rotor blades 
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of constant cross-section of the resonance. Technological constraints are 

reduced to a certain FP embodiment, task specific surface finish, as well as the 

use of standardized components – profiles, shanks, etc. 

Common to powerful steam turbines HPC and IPC is the requirement of 

blading unification, when all stages are formed by trimming the top of the 

nozzle and rotor blades of the last stage of the module. At the same time it 

maintained a constant root diameter, angles 
1h  and 

2h , as well as the root 

degree of reaction 
hR  at the uniform heat drops distribution between the stages 

and the constant axial velocity component in sections. 

Consider ways of forming the cylinder FP, consisting of sections, satisfying, 

in particular, the above requirements of the unification. The idea of the method 

repeatedly expressed earlier. We apply it to the computer-aided FP design and 

make some modifications and generalizations. 

3.2.1  Methods of the FP Synthesis 

Consider one of the formulations of the PD problems, which we call the task 

I, in relation to the module. 

Suppose that the root diameter 
hD , root degree of reaction 

hR  and angle 
1h  

are known. The nozzle and rotor blades are considered to be twisted by law 

constuc r  , which gives: 

 
1 1 2 2ctg const; tg constr r   , (3.28) 

and to change the degree of reaction along the radius the relation is applicable 
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or the approximate formula [10] 
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. (3.29) 

First of all, the estimated process of steam expansion in the module is build. 

As we know neither the number nor the geometrical characteristics of the stages, 

it can be done only very approximately, evaluating the module efficiency 
im , 

such as by method [30]. This makes it possible to find the parameters of steam 

at the end of the actual process of expansion and, taking this process as linear, 

to evaluate the thermodynamic parameters at any pressure 

*

2 , mod 0nP P P  . 

To select the number of stages in the module let allow approximately uniform 

breakdown of the heat drops by the stages. Then, by setting the velocity ratio 

0u C  or evaluating its "optimal" (i.e. corresponding to the axial outlet flow 

from the stage – 
2  = 90) value, for example, by the formula [10] 
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, (3.30) 

you can get 
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, (3.31) 

where 
0H  – module disposable heat drop; 

inc  – velocity at the inlet of the 

module; n – stage number – rounded up to the nearest integer. 

Velocity 
inc , which is equal to the axial component is determined by taking 

into account (3.30) according to the formula 
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where  is assumed equal to 0.96...0.98. 

Introducing the notation 
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on the proposed steam expansion process for each of the stages the parameters 

in the gap between vanes without much error is determined based on the 

relationships: 
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 (3.33) 

     *

1 1 0, 1 1j j mji i P S j S R S      , (3.34) 

  1 1 1, , 1, ,j j jP i j n   . (3.35) 

Pressures downward the stages are equal 

2
* *

2 0 0,
2

in
j

c
P P i j i S j S 

 
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Nozzle vanes heights are determined from the continuity equation 

  1 1 1 1j j h j j zG l D l c   , (3.36) 

where 
1zc  taken from (3.32). 
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Solving (3.36) as a quadratic equation, we find 
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Since the value of mjR , entering into (3.33)–(3.35), depends on the height of 

the blades, the iterative refinement of all the values determined by formulas 

(3.29), (3.33)–(3.35), (3.37) is needed. Taking as an initial approximation 

0hR  typically achieve convergence of 2–4 iterations. 

Instead of 
1h  may be set, for example, the ratio 

mD l  of the 1-st stage. We 

call this formulation as the problem II. In this case, immediately we find the 

height of the blades of the 1-st stage 

1

1

h

m

D
l

D

l





 

and the 1-st stage degree of reaction at the mean radius using (3.29). 

Angle 
1  of the 1-st stage is determined based on the continuity equation 

  1 1 1 1 1sin mG c D l l   , (3.38) 

the obvious relation 
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and the conditions (3.30), what after simple calculations gives 
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Furthermore, deleting 0C  from (3.39) using (3.30), we obtain 
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The most advantageous number of stages in a module is determined by (3.31). 

Otherwise method II does not differ from the method I. 

With the introduction of the coefficient 

1 ,z n

z

in

c
K

c
  

methods I and II can be generalized to the case where the axial velocity 

components linearly vary from stage to stage. For this purpose, in the equations 

(3.33), (3.36) and (3.37) 
1zc  should be replaced by the value 
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It should be borne in mind that when 1zK   the blade system unification 

condition (
1 consth  , 

2 consth  ) is not satisfied. 

Thus, as a result of solving PD problems in the statement I (II) certain basic 

characteristics of the FP are defined: the number of stages n, stages counter-

pressures 2 jP , root – level reaction degrees 
hR , root diameter 

hD , height of 

nozzle vanes 1 jl , angles h1  (ratio 
mD l  of the 1-st stage). 

3.2.2  Detailed Thermal Calculation 

Next, to a more accurate assessment of the created design quality criteria and 

calculation of all required parameters is proposed to solve the inverse one-

dimensional problem of thermal calculation of the FP for each of the stages of 

the cylinder. Known at this point data is not enough for this calculation. 
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Additionally, you need to specify the height of rotor blades, the geometric 

characteristics of the cascades, seals, etc. 

Selection of missing values must be based on the design adopted, strength, 

technological and other requirements. For example, the height of the rotor blade 

can be obtained on the ground of information about the standard overlap or 

through the strict implementation of the conditions 
2 consth   in the group of 

stages. Using standard profiles data or generalized dependencies for the profile 

characteristics of arbitrary shape allows you to create a cascade, satisfying the 

requirements of efficiency, reliability and manufacturability. Selection of the 

main cascade parameters (a chord, stagger angle, pitch, etc.) it is advisable to 

carry out during the refinement of the velocity coefficients of crowns in the   

one-dimensional inverse problem of the FP thermal calculation. It’s quite a 

complicated independent problem which deserves special consideration. 

The results of this calculation are the kinematic parameters of the flow in the 

gaps, the effective angles, cascade’s components of the kinetic energy loss and 

power parameters of stages. It also calculated the magnitude of stresses in the 

elements of design, weight, size and other characteristics. This information is 

sufficient to draw a conclusion about the quality of the built structure and the 

need to continue the design process. 

A proximity in the selection of the basic FP parameters in the first PD stage 

compensated with the detailed account of the most factors affecting the quality 

parameters of the turbine in the model of thermal calculation. However, it 

should be borne in mind that during the synthesis of the FP should be set a 

number of parameters which are precisely determined only at the second 

calculation step. Therefore, there may be some differences in the parameters 

0 2 , mod, , iu C   . 
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The most significant differences between the set and the refined 
1h  value, 

which can reach 0.5...1.0 or more because of the stages number rounding to the 

nearest integer in the formula (3.31) and, as a consequence, the deflection 
0u C  

in the formula (3.30) from the optimum. For this reason, and also because of 

methodologically inappropriate to set as the initial parameter, which 

subsequently must be determined (angle 
1h ), the PD problem formulation II 

seems more rational. 

3.2.3  Optimization 

The desire to automate the PD process leads to the development of an 

algorithm for finding the optimal combination of the basic parameters of the flow 

path. With regard to the formulation II it is , , ,h h h mD R D l  of the 1-st stage, and 

in case of failure of the unification – also 
zK . The total number of variables to 

variable cylinder consisting of 
mn  modules thus does not exceed 

mod5n . 

They imposed restrictions 

 

     

min max

min max

min max

min max

min max

;

;

;

;

.

h h h

h h h

h h h

z z z

D D D

R R R

D l D l D l

K K K

  

 


  


  


 

  

 (3.42) 

When selecting cascade’s profiles during the detailed thermal calculation 

may be presented restrictions on static strength of the diaphragm and the rotor 

blades of the type 

    , (3.43) 

design 
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1 1 min

2 2 min

max

;

;

h h

h h

n n

 

 

 


 
 

 (3.44) 

and other. 

To automatically design the FP, optimal in terms of the selected quality 

criteria, the designer must specify ranges of variable parameters and the 

required number of points in the search space defined by the conditions (3.42). 

Sampling points generation is conducted using the LP sequences. 

Clarification of the optimal solution is achieved by reducing the ranges in the 

search. Typically, the amount of the search points ranges from a few dozen to 

several hundreds. Since the synthesis and thermal design of one point takes a 

few seconds, the maximum time to find the optimal variant is not more than a 

few minutes on a standard PC. 
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4.1  Formulation of the Problem 

Mathematical models of gas and steam turbines stages, discussed above, 

allow to put the task of their geometry and gas-dynamic parameters 

optimization. This optimization problem is solved by the direct problem of 

stage calculation. The reason for this are the following considerations: 

 it is most naturally in optimizing to vary the geometry of the blades; 

 in the streamlines form refinement it is convenient to use well-established 

methods for the solution of the direct problem in the general axisymmetric 

formulation; 

 only a direct problem statement allows to optimize the stage, taking into 

account the off-design operation; 

 For the stages to be optimized, assumed to be given: 

 the distribution of the flow at the stage entrance; 

 the form of the meridian contours; 

 the number of revolutions of the rotor; 

 mass flow of the working fluid; 

 averaged integral heat drop. 

In general, you want to determine the distribution along the certain axial 

sections of angles 
1  and 

2  to ensure maximum peripheral efficiency of the 

stage: 

 

* *

0

0 0

u uL d h d

 

     , (4.1) 

Where 
2

1 1 2 2 0 2; 2u u u u s rL u c u c h L h h c       . 
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Restriction on the heat drop, that determines the back pressure, is given in the 

form: 

 

*

*

0 0

0

mh d h



  . (4.2) 

The effective angles of cascades may be restricted: 

 1max 1 1min 2max 2 2min;         . (4.3) 

Here the inlet geometric angle of the rotor we assume equal to the angle of 

the inlet flow. Selection of the optimal angle g1  can be achieved solving an 

optimal profiling problem. 

The objective function (4.1) can be calculated with the known distribution of 

the kinematic parameters of the flow in the gaps, which are determined by 

solving the direct problem of the stage calculation using the models set out in 

Chapter 2. 

Mathematically, the assigned stage optimization problem has been reduced to 

a problem of the theory of optimal control of distributed parameter systems, 

including integrated criterion of quality (4.1) and system of constraints, which 

comprises: 

 a system of equations in section 1 for the nozzle (2.39); 

 a system of equations in section 2 of the rotor (2.40); 

 isoperimetric condition (4.2), ensuring operation at a given stage heat drop; 

 restrictions on the control variables (4.3). 

The velocities 
1c  and 

2w , and the radii 
1r  and 

2r  are the phase variables; the 

independent variable stream function  plays the role of time. 
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From physical considerations it is obvious that the control functions  1   

and  2   must be sufficiently smooth, at least continuously differentiable, i.e. 

does not have discontinuities of the first kind, and kinks. For this purpose it is 

convenient to use parametric angles as dependencies 

 1 2

1 1 2 2ctg const; ctg const
m m

r r   , (4.4) 

which allow to investigate the influence of coefficients 
1m  and 

2m  on the stage 

efficiency. 

The parameters 1m  and 2m  characterize twist angles gradients. For 0m   are 

obtained the angles increasing to the periphery (direct twist) and for 0m   – 

decreasing (reverse twist). Twist law constuc r   corresponds to the values 

1 1m  , 
2 1m   , that under the simplified equation of radial equilibrium, 

provides a minimum of the output velocity losses for the stage with cylindrical 

contours. 

4.2  The Impact of Leaks on the Axial Turbine Stages 

Crowns Twist Laws 

Significant impact on the stage efficiency have leakage of the working fluid 

through the seal gaps and discharge openings. The dependence of the leakage 

(and associated losses) of the stage bounding surfaces parameters can 

dramatically affect the distribution of the optimal parameters along the radii and, 

hence, the spatial structure of the flow therein. The latter, in turn, is determined 

by the shape and twist law of guide vane and impeller. 

Development of algorithms for the axial turbine stages crowns twist laws 

optimization demanded the establishment of appropriate in the terms of 

computer time methods for calculating the quantities of leaks and losses on 
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them, allowing the joint implementation of the procedure for calculating the 

spatial parameters of the flow in the stage. 

The leakage calculation is necessary to conduct together with a spatial 

calculation step, as the results of which the parameters in the calculation 

sections are determined, including the meridian boundaries of the flow path. 

The flow capacity depends on the clearance (or leakages) values, in connection 

with which main stream flow calculation is made with the mass flow 

amplification at fixed the initial parameters and counter-pressure on the mean 

radius, or clarifying counter-pressure at fixed initial parameters and mass flow. 

The need for multiple stage spatial parameters calculation (in the optimization 

problem the number of direct spatial calculations increases many times) 

demanded a less time-consuming, but well reflecting the true picture of the flow, 

methods of spatial stage calculation in the gaps described above (Fig. 2.3). 

When calculating stage in view of leakage the continuity equation is 

convenient to take as [8]: 

 cossr w
r


  





, (4.5) 

where  – the mass transfer coefficient, which allows to take into account 

changes in the amount of fluid passing through the crowns, and at the same time 

to solve a system of ordinary differential equations in sections in front of and 

behind the impeller like with a constant flow rate. 

The leakage mass transfer coefficients [13] is defined as follows 

0
1

1 1

1 d
leak

G G

G G
    ; 

0
2

2 2 2 2

1 d hr
leak

G G GG

G G G G
      . 
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In the case of wet steam flow with loss of moisture, crown overall mass 

transfer coefficient is given by 

 , , , 1, 2i i leak m i i    , 

where im,  – flow coefficient, is usually determined in function of the degree 

of humidity and pressure ratio [8]. 

As shown in Chapter 2, the calculation of stage spatial flow with the known 

in some approximation the shape of the streamlines is reduced to the solution in 

the sections 
1 constz   and 

2 constz   (Fig. 2.3) a system of ordinary 

differential equations (2.39) and (2.40), wherein as the independent. 

As discussed in Chapter 2, the solution of (2.54) (2.55) for a given flow rate 

is reduced to finding the roots of the two independent transcendental equations 

in the hub velocities 
1 2,h hc w . 

For a given backpressure to the number of defined values the parameter 
*  

is added and the problem reduces to solving a system of three equations. As a 

third equation the heat drop constraint (2.45) is added which can be 

symbolically written as 

  *

1 2 0, , 0h hh c w h   . (4.6) 

Systems of equations are solved using the methods of nonlinear programming. 

The calculation of stages with reverse twist using the proposed method 

allows to obtain a valid reaction degree gradient and circumferential velocity 

component of the stage, while the calculation provided cylindricality flow gives 

results that differ significantly from the experimental data. The technique allows 

to take into account also the effect of the rotor twist law on the parameters 
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distribution in the gap after stator. This is evidenced by comparison of stages 

with the same nozzle assembly. 

Effect of 
mD l  ratio 

With the methods described above, you can put the task of the stage parameters 

optimization along the height, taking into account the spatial flow and leakages. 

To explain the physical meaning of certain optimum blade units twist laws 

depending on different characteristics of stages, such as D l  ratio, radial gap, 

level of reaction degree at the mean radius, the presence of suction, and other 

factors, there is convenient to use the angle dependencies in the form (4.4). 

The stages characteristics changing may be presented as constant level lines 

(isolines or topograms) in the plane of the variables 
1m  and 

2m . Computational 

studies were subjected to axial turbine stages with 19 3.2mD l  , which have 

been tested on an experimental air turbine [13]. Some of them are at the same 

axial dimension and 
mD l  have different levels of reaction at the mean radius 

that allows us to estimate the impact of the last factor on the crowns optimal 

twist laws. Separately the impact of radial clearance and suction at the root on 

optimal stage parameters was studied. 

Influence of leakage through the radial gap 

An important part of the kinetic energy loss in the axial turbine stage is a loss 

from radial clearance leakage, which is defined on the one hand, design and 

dimensions of the peripheral seal of the rotor blade and on the other  the 

pressure difference in the axial clearance in the outer radius. The analysis shows 

that in the stages of steam turbines for the amount of leakage significantly 

affects the 
mD l  ratio: in the stages with relatively short blades, where 

r bl  is 

large, leakage losses greater of stages with a small 
mD l  ratio, despite the 
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higher degree of reaction at the outer radius of the latter. Higher losses from 

leaks have stage without rim seals. 

Large turbine units operating experience shows, that the radial clearances 

may increase from 1.5 mm to 5 mm, which results in reduced efficiency due to 

leaks more than 2 %. In some turbines due to increased near-the-shroud gaps 

efficiency drops 2…3 % or even 5 %. 

In order to analyze the impact of the radial clearance leakage losses to 

optimal axial turbine stage crowns twist laws calculation were conducted for the 

above stages with all sorts of combinations of parameters 
1m  and 2m  and the 

radial clearance values. As a result of numerical experiments parameters level 

lines built that characterize the efficiency in the plane of 
1m , 

2m . 

As an example, the results of the calculations are shown in Fig. 4.1, 4.2. Each 

point of the topogram was produced by the method of the spatial calculation in 

gaps with the streamlines refinement. The calculations were performed in 

different statements: with a given flow rate with a predetermined heat drop, 

with a predetermined flow rate and heat drop adjusting when you change the 

angle 
1m . 
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a 

 

b 

Figure 4.1  Dependencies of stages I and II efficiency with a different relative  

cascades width values with the 3.6mD l 
 
on the blades twist laws at  

different radial clearances. 
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Figure 4.2  Dependence of the relative losses in stage II with 3.6mD l   on the  

blades twist laws at different radial clearances. 
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Effect of parameters 
1m , 

2m  on the reaction gradient degree varies with 

different diameter to blade length ratios. Thus, for stages with relatively long 

blades ( 5mD l  ) substantial reaction gradient alignment has been observed 

when 
1 1m   , whereas for short blades ( 10mD l  ), requires values 

1m  

reduction up to 8…10. Significant impact on the reaction gradient degree 

with the reverse twist of the guide blades have also stage axial dimensions, 

especially nozzle relative width (or chord). At lower values the effect of the 

reaction gradient degree leveling is stronger. Reaction gradient degree 

alignment not only affects the magnitude of flow leakage and loss of these, but 

also manifested in the increase of uneven circumferential velocity component 

along the radius for the rotor, which leads to increased losses from the exit 

velocity the more (depending on 
1m  and 

2m ) the smaller the 
mD l  ratio. The 

value of the leakage losses in the radial gap determined by the relative leakage 

flow rate, which depends, inter alia, on the radial clearance size and its design. 

The results of numerous calculations indicate that the crowns optimum twist 

laws (parameters 
1m  and 

2m ) for the stages of the various 
mD l  ratio at 

different values of radial clearance is mainly determined by the ratio between 

the amount of output velocity losses, and losses from leaks in the radial 

clearance. Influence of hydraulic losses in the guide vane and the rotor has a 

significant impact on the level of the degree of reaction for very small leak 

quantities into over-shroud space. 

At zero clearance maximum of peripheral efficiency of the cylindrical stage 

for small 
mD l  located in a neighborhood of the point with a minimum exit loss 

(Fig. 4.1, 4.2): the guide vanes twist close to the constuc r   law, and impeller 

should be twisted a little more intense (
2 1 2m    ). 
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With increasing mD l  ratio the maximum peripheral efficiency shifts toward 

twist laws with 1 1m   due to the hydraulic losses influence. The amount of 

displacement depends on the method of calculation (with a given flow rate or 

heat drop) and the reaction degree at the mean radius: offset is stronger when 

calculating with a predetermined flow rate due to changes in the angle 1  at the 

middle (on flow rate) radius as a result of the streamlines lifting, as well as an 

increase in the average reaction degree. 

The increase of the relative radial clearance leads to a shift of the maximum 

internal stage efficiency point in the direction of 1m  downward and 2m  increase, 

which is a sharper, then mD l  relation is greater. This entails the reaction 

degree gradient alignment due to the streamlines inclination to the hub after the 

stator and some thrown at the periphery of the impeller. For example, in sages 

with 8.3mD l   in the absence of leakage in a radial gap some flow preload to 

the periphery in the gap between the vanes is expedient. As the radial clearance 

increases it is appropriate to decrease the level of the reaction degree at the 

mean radius and its gradient. When 1.5r   mm is advantageous to almost 

completely eliminated the reaction gradient ( 4 5
1

m    , 2 0 1m  ). The 

calculated results are in good agreement with the experimental study [13]. 

In the stages with even shorter blades ( 19mD l  ) for large radial clearances 

1m  optimum value drops to 9…11, and 2m  increases to 4…5. For large 

lDm  values the stages with reverse twist for all real values of clearance have 

higher efficiency than the stages of traditional design. Winning increases with 

decreasing gap and the degree of reaction at the mean radius. Experimental 

research of stages 19mD l   [13] fully confirms the conclusions. 
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The character of the stage relative loss change qualitatively is the same for all 

types of stages, with both small and large 
mD l  ratios (Fig. 4.2). Isolines of the 

exit velocity loss form closed curves, surrounding the minimum point with 

1 1m  , 
2 1m   , corresponding to the constant circulation twist law. Isolines of 

the relative hydraulic loss regardless of the size of radial clearance are in the 

nature of saddle points: the relative losses in the guide vanes have in the saddle 

point 
1m  maximum and 

2m  minimum, while the relative losses in the rotor 

blades on the contrary, have 
1m  minimum and 

2m  maximum. With the 
mD l  

ratio increase hydraulic losses in the crowns becoming less dependent on the 

laws of another crown twist, acquiring the form of lines extended along the 

respective axes. This applies in particular to losses in the guide vane. 

The leakage losses in the radial clearance in the plane of the variables         

1m , 
2m  achieved the highest value in the upper left corner of the topogram, 

where the peripheral degree of reaction is maximal, and the least – in the lower 

right corner, where the reaction degree gradient is minimal. 

Influence of suction in the near-the-hub gap 

To investigate the suction effect on the crowns best twist laws at fixed  

parameters on the mean radius were selected three experimental air turbine 

stages, with different blades elongation and reaction degree at the mean radius 

( 3.6, 8.3,14.1mD l   and 0.2, 0.02, 0.01mR  , respectively). Calculations were 

made for various values of the radial gap and flow suction introduced by 

changing the reduced gap of the diaphragm seal, to provide thereby suction 

value in stages with 3.6mD l   – 0.5 %, with 8.3mD l   – 1 % and with 

14.1mD l   – 2 %. 
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The influence of the flow suction does not change the conclusions regarding 

the optimal crown twist laws made above. It should be borne in mind that in 

actual turbine stages discharge holes presence results in a large impact on the 

suction flow of the pressure difference at the inner radius of the impeller. When 

properly selected reaction degree in the root and the appropriate size of the 

discharge holes relative flow rate of the jet can be almost reduced to zero. 

4.3  The Axial Turbine Stage Optimization Along the 

Radius in View of Leakages 

The above numerical study results, confirmed experimentally, show, that 

leakages significantly affect the axial turbine stage crowns optimal twist laws. 

With a decrease in the length of the rotor blade (increase of 
mD l  ratio) this 

effect is amplified. 

In this regard, the problem arises of determining the guide vanes and rotor 

optimal twist laws for a given stage geometry, inlet parameters, the rotor 

angular velocity, flow rate and heat drop. We restrict ourselves to the task of 

practically important case of the blades angles specification in the form (4.4). At 

the same time, while setting the flow and heat drop together, thermal calculation 

is performed by adjusting one of the angles m1  or m2 . Described below 

optimization technique based on repeated conduct this kind of thermal 

calculations for the purpose of calculating the internal stage efficiency 

depending on one of 
1m , 

2m  angles, and the exponents 
1m , 

2m  in the 

expression (4.4). 

Assume that the control variables are 
2m , 

1m  and 
2m , whereby the back 

pressure at a predetermined flow rate must be specified by changing the angle 
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1  at the mean radius. The problem of the thermal stage calculation is written 

as 

   

   
   
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and its numerical solution is based on finding the roots of transcendental 

equations 
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 


 

 (4.7) 

After the solution of (4.7), which is conducted with the specification form of 

the stream lines, leakage values, velocity and flow rate coefficients, internal 

stage efficiency calculated as a function of three variables 
2m , 

1m , 
2m . 

Thus, the stage optimal design problem with a maximum internal efficiency 

reduced to a nonlinear programming problem: 

find 
2 1 2, ,

0

max
m

i
m m

N

h
  , (4.8) 

where 
0h  is calculated by the formula [13]: 

0 s r out d d r r bh bhh N h h h h G h G h G              

  
21

sin
2

h h h h mixh c G h  
 

   
 

, (4.9) 
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Unconditional maximization (4.8) does not meet the fundamental difficulties. 

Physically seems justifiable division of the optimization problem (4.8) on two 

related subtasks: 

 determination of optimal angles at the mean radius under the certain 

blades twist laws; 

 selection of optimal parameters 
1m  and 

2m  at specified angles. 

Thus, the general problem (4.8) can be solved iteratively by alternately 

solving subtasks: 

 1 2

0

max at , consti

N
m m

h
   ; (4.10) 

 
1 2

2
,

0

max at consti m
m m

N

h
   ; (4.11) 

This approach is analogous to the component-wise optimization, which is a 

special case of the known method of the coordinate descent (Gauss-Seidel). The 

first of the sub-tasks (4.10) is solved by searching the extremes of functions of 

one variable. The second sub-task (4.11) can be solved by direct search of two 

variables function extremum. The combination of a one-dimensional search of 

the best angles at the mean radius and a direct search of optimum parameters 

1m , 
2m  was the most reliable way of the problem (4.8) numerical solution, 

providing the finding of the global maximum of the objective function even in 

the presence of local extrema in the topogram plane. 

As a practical application of the developed technique of the turbine stage 

spatial optimization in view of leaks were upgraded cylinders of high and 

intermediate pressure of the steam turbine with 200 MW capacity. Relation 

mD l  varies from 25 (II stage of HPC) to 4.8 (VII last stage of IPC) (control 

stage was not considered), the number of stages in the HPC and IPC was 6 and 
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7, respectively. As initial were taken the stages with the manufacture’s blade 

angles at the mean radius. If 10mD l  , rotor blades assumed cylindrical, and if 

10mD l   – twisted by constant circulation law. Modernization was carried out 

at regular radial gaps ( 0.001r tD  ). 

The data allowed to build dependence of the parameters 
1m  and 

2m , 

characterizing crowns twist laws on the ratio 
mD l  (Fig. 4.3). 

 

Figure 4.3  Dependencies of the parameters 1m  and 
2m , defining the crowns twist 

laws of powerful steam turbine HPC and IPC stages on the 
mD l  ratio. 

Comparison of the effectiveness of IPC sections, consisting of original and 

optimized stages showed that efficiency of the last 0.65% above baseline. With 

increased radial clearances the gain increases. 

The possibilities of this optimization method can also be illustrated by 

modern powerful (500 MW) steam turbine IPC upgrading example. 500 MW 

turbine intermediate pressure cylinder consists of 11 stages in the range

10.8 3.6mD l  . 

Optimization calculations have shown the expediency of the crowns twist 

with 
1m  and 

2m , the values and the magnitude of which change depending on
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mD l  are denoted with triangles in Fig. 4.3. Reducing exponents 
1m  for stages 

with the same 
mD l  values from the turbine 500 MW compared to 200 MW 

turbine can be explained narrower guide vanes (lower 
tB l  values) in the IPC 

of the first turbine. Carried out optimization calculations have shown 0.45% 

improved cylinder efficiency. 

4.4  The Effect of Tangential Lean on the Characteristics of 

Axial Turbine Stage 

One means of the flow control in the axial turbine stage is the use of blades 

with non-radial setting. In this case, there is a non-zero the blade surface lean 

angle. 

Vortex equation for the case of flow in a rotating crown can be written as: 

 projected on the radial direction: 

 
2 2

2 2 ln ctg 1 ctg
1 ctg cos sin

2

s s
s s

w w
w w x

r s r r

 
  

   
      

   
 

 2 ctgs r r

H s
w T F f

r r
 

 
    

 
; (4.12) 

 in the projection on the circumferential direction: 

 
2 lnsin ctg ctg

ctg 2 sins
u s s u

w
F w w f

r s s

  
  

 
     

  
, (4.13) 

where ctg ctg cos tg sinp      ; (4.14) 

 tgr uF F  . (4.15) 

Substituting (4.13) in (4.12) with (4.14), (4.15) and neglecting friction forces 

0r uf f  , we get the following equation of the radial equilibrium: 
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. (4.16) 

Turning to the new independent variable  – the stream function, we write 

(4.16) in final form: 
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    
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2 ctg sin tg H TS
w w


  


    
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. (4.17) 

Equation (4.17) for given geometrical parameters of the surface 
2S   forms a 

closed system of ordinary differential equations in cross-section constz   

together with the continuity equation: 

  
1

cossr r w  


  . (4.18) 

Consider a three sections stage calculation which located on the entrance and 

exit edges of the guide vane and on the trailing edge of the impeller. Derivative 

ln sw s   is defined in terms of the flow of the working fluid in the free space 

(right side of the design section): 

 
  2

2

tgln M1 cos
tg sin

M 1

s u

s

rw
x

s r r r


 

  
   

   
. (4.19) 

In the absence of lean  tg 0   the equation (4.17) coincides with the 

previously obtained. Upheld algorithm for the stage calculation by sections and 
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supplements it by specifying the lean angles of the guide and rotor blades output 

edges. Agreed   constr  . 

Of particular interest is the study of the guide vane lean in order to assess its 

effect on the degree of reaction gradient and as a consequence, the amount of 

leakage in the radial space over rotor blades for different types of guide vane 

twists  r . 

To determine ctg s   the profile’s backbone line appears as a parabola 

  2u u z az bz   , that gives approximately: 

 2 1ctg ctgctg

s H

  



, (4.20) 

where H – the width of the blade. 

Estimated study shows that the lean most strongly affects the flow conditions 

in the stage just because a member 
ctg

tg
s







. If there  is positive, an 

alignment of reaction gradient happens, and, as can be seen from (4.20), the 

stronger, the smaller the 1  angle and narrower the blade. Analysis (4.17) 

shows that the pressure compensation in the gap due to nozzle reverse twist 

occurs because of the appearance of the curvature of the stream lines in the gap, 

i.e. this influence is indirect and requires specification of the form of the stream 

lines in the stage calculation. 

On the contrary, the effect of the lean angle on the degree of reaction gradient 

in the equation (4.17) manifests itself through the curvature of the surface in the 

oblique cut area, which allows the stage calculation even within a cylindrical 

theory. 
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Calculations were performed to determine the effect of the nozzle tangential 

lean on the characteristics of the experimental air turbine stage with high load 

14mD l  , with the value of the radial gap 1.5r   mm. 

   
a b c 

  
d e 

Figure 4.4  The impact of the lean on the stage performance with m = 1. 
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Figure 4.5  Dependence of the radial clearance relative mass flow and stage internal 

efficiency on the lean angle for m = 1. 

Vane twist law was set in the form (4.4) and the lean angle ranged 

–10…+20. The results of calculations for m = 1 (the constant circulation law), 

and m=-8 (reverse twist, optimal when this value of radial clearance in the 

absence of the lean) are shown in Fig. 4.4, 4.5 and Fig. 4.6, 4.7. The figures 

show that the lean is a powerful tool in controlling the stage flow, in some cases 

giving an opportunity to significantly increase its efficiency. 
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d e 

Figure 4.6  The impact of the lean on the stage performance at m = –8. 

 

Figure 4.7  Dependence of the relative mass flow in the radial clearance and stage 

internal efficiency on the lean angle at m = –8. 
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There are two different approaches to determining the optimal parameters of 

planar cascades of profiles for the designed axial turbine flow path. 

The first one which is suitable for the early stages of design, does not takes 

into account the real profile shape, i.e. based on the involvement of empirical 

data on loss ratio, geometrical and strength characteristics depending on the 

most important dimensionless criteria (the relative height and pitch, geometric 

entry and exit angles, Mach and Reynolds numbers, relative roughness, etc.). 

The advantages of this approach are shown in the calculation of the optimal 

parameters of stages or groups of stages, as allow fairly quickly and accurately 

assess the mutual communication by various factors – aerodynamics, strength, 

technological and other, affecting the appearance of created design – and make 

an informed decision. 

The second approach involves a rigorous solution of the profile contour 

optimal shape determining problem on the basis of a viscous compressible fluid 

flow modeling with varying impermeability boundary conditions of the profile 

walls. In practice, the task is divided into a number of sub-problems (building 

the profile of a certain class curve segments, the calculation of cascade fluid 

flow, the calculation of the boundary layer and the energy loss) solved 

repeatedly in accordance with the used optimization algorithm, designed to 

search for the profile configuration that provides an extremum of selected 

quality criteria (e.g., loss factor) with constraints related to strength, and other 

technological factors. 

5.1.  The Cascade’s Basic Geometry  

Parameters Optimization 

The importance of solving the problem of the cascade’s basic characteristics 

definition can be seen from the following considerations. Let designed axial 

turbine stage blades at a predetermined height. Under certain parameters before 
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and behind the stage is usually determined the number of blades and profile 

chords so that with an energy loss minimum satisfy strength and vibration 

requirements. The simplest solution is to select the "optimal" t/b ratio using 

known empirical relationships and determining the chords provide reliable 

operation. Upon closer examination the situation is not so simple: first, the 

optimum ratio t/b is determined by many factors (the relative thickness of the 

edge, the Reynolds number and the relative roughness of the surface, relative 

height and others); secondly, the permissible loss and the vibration 

characteristics depend on the influence of the previous cascade; third, the stage 

design can be carried out both from the set of standard profiles or suggest 

subsequent entirely new cascades profiling. Consideration of these 

circumstances makes the task of optimization of the basic cascade parameters 

quite challenging and promising in terms of using hidden in complicated 

situations reserves to increase efficiency and reduce consumption of materials in 

the created turbomachine design. 

The calculation of the kinetic energy loss on the basis of empirical 

relationships has repeatedly been considered and, as experience shows, in the 

form set out in Chapter 2, is a reliable tool to assess the various components of 

the losses in the cascade. Calculation of the geometric characteristics of the 

profiles is carried out using a dependency suitable for working and nozzle 

profiles, including an elongated front portion. The stresses in the diaphragms, 

nozzle and rotor blades, as well as restrictions on the vibrational reliability 

calculated by the well-known and, as far as possible, the exact dependence. 

When optimizing an isolated cascade the following problem statements 

species are considered. 
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I. Profile presentation method 

I.1. Standard profile. The geometric characteristics are determined by the 

tabular data and restated for a specific profile stagger in the cascade, which 

provides the desired output stream angle at a known relative pitch. 

I.2. "Macromodel". The form of the profile is not known beforehand, but its 

defining geometrical characteristics can be estimated by empirical dependence 

of the type [26]. 

I.3. Profiling. In addition to the previous statement can be built demo profile, 

designed by a faster way. It is possible geometrical and strength characteristics 

evaluation on its configuration. 

II. Variable parameters. 

II.1. Optimization of chord when t/b = const. 

II.2. Optimization of t/b when b = const. 

II.3. The chord and the relative pitch optimization. In constructing the 

cascade of the standard profiles the profiles chord selection is in sequential 

enumeration of profiles of this type, but of different size [20, 33]. 

III. Boundary conditions. 

III.1. Geometric, kinematic and gas-dynamic parameters in the first 

approximation are given from stage thermal calculation. 

III.2. Cascade optimization process is conducted directly to the stage 

(multistage flow path) thermal calculation and optimization. In this case, the 

design of the cascade is embedded in an iterative process instead of the 

verifying energy losses in cascades, as is usually done. 

Optimization is made by LP- search, and where this is not possible, brute 

force at defined ranges of variable parameters and the number of sampling 
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points. The calculation is carried out in designer’s dialogue with a computer, 

which significantly reduces the time to find an acceptable solution. 

5.2  Profiles Cascades Shaping Methods 

The resulting thermal calculations of optimal geometry and gas-dynamic 

parameters of the working fluid at the inlet and outlet of the blade row let you 

go to the next stage of optimization of the turbine flow path – the blade design. 

The solution of the latter problem, in turn, can be divided into two stages: the 

creation of planar profiles cascades and their reciprocal linkage also known as 

stacking [25]. 

The optimal profiling problem formulated as follows: to design optimal from 

the standpoint of minimum aerodynamic losses profiles cascade with desired 

geometrical characteristics, provides necessary outlet flow parameters and 

satisfying the requirements of strength and processability. 

To optimize the cascade’s profile shape profiling algorithm is needed, 

satisfying contradictory requirements of performance, reliability, clarity and 

high profiles quality. 

Earlier, considerable effort has been expended to develop such algorithms 

[25]. Analyzing the results of these studies, the following conclusions may be 

done. First, great importance is the right choice of a class of basic curves, of 

which profiles build (which may be straight line segments and arcs, lemniscate, 

power polynomial, Bezier curves, etc.), which primarily determines the 

reliability and visibility of solutions. The quality of the obtained profiles 

associated with the favorable course of the curvature along the contours, the 

choice of which is carried out using the criteria of "dominant curvature", 

minimum of maximum curvature, and other techniques. 
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First, consider the method of profiles constructing with power polynomials 

[15, 34]. The presentation will be carried out in relation to the rotor blade. 

5.2.1  Turbine Profiles Building Using Power Polynomials 

Initial data for the profile construction. Analysis of the thermal calculation 

results (entry 
1  and exit 

2  angles, values of flow velocities 
1W  and 

2W ), and 

the requirements of durability and processability lead to the following initial 

profiling data (Fig. 5.1): 1g  – constructive entry angle; f – cross-sectional area; 

b – chord; t – cascade pitch. Optimal relative pitch of the cascade can be 

determined beforehand on the recommendations discussed in [25];  

a – inter-blade channel throat; 
1  – entry wedge angle; 1r  – the radius of the 

leading edge rounding; 
2r  – the radius of the trailing edge rounding;  

2  – exit wedge angle; 
s  – profile stagger angle; 2g  – constructive exit 

angle;  – unguided turning angle. 
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Figure 5.1  The design parameters of the profile cascade. 

Of the last six parameters three (
1r ,

2r ,
2 ) are determined by calculation, the 

remaining three (
s , 2g , ) can also be determined in the first approximation 

by the empirical formula [25]. In further at constructor’s option last three 
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parameters or part of them, may be maintained constant during the profiling, or 

changed, as variable parameters. As a first approximation for the profile stagger 

angle 
s  the next relationship can be recommended: 

   
2

1 2 1 213.59 0.682 0.0028s g g g g         . 

Profile is built in a Cartesian coordinate system. Coordinates of the circle 

center of input and output edges, as is easily seen, is given by (Fig. 5.1): 
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 (5.1) 

The coupling coordinates of the edges circles with convex and concave sides 

of the profile 
1 2 1 2, , ,C C K K  and their derivatives at these points are defined as 

follows: 
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, (5.2) 
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 (5.3) 

Where 1 1 1 1 1 12; 2;C g K g          

2 2 2 2 2 22; 2.C g K g          

The wedge angle of the leading edge 
1  in first approximation can be 

determined using the guidelines [25]: 

 max 1
1

2
2.5

C r

b



 , (5.4) 

Where 
max 1.3C f b . 

The trailing edge wedge angle 
2  can be set by the designer or determined 

by the expression: 

 1
2

1

0.14

0.2
K








. (5.5) 

In the formulas (5.4), (5.5) the angles are in radians. The K  value is often 

taken as equal to 1. It can influence the position of the center of gravity of the 

profile. In the process of profile building angle 1  specified from the 

conservation of a given area. 

Preserving the value of the throat a, for point D we have: 
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 (5.6) 

In the construction of the profile convex and concave parts must first achieve 

coupling of describing their curves with circumferential edges, while the 

profile’s convex part with the circumference of the throat at the point D. This 

means that these curves must satisfy the boundary conditions which are defined 

by formulas (5.2), (5.6) to the convex and (5.3) for the concave portions of the 

profile. 

As for the convex part the number of these conditions is six, and for the 

concave – four, in order to have an opportunity to widely vary the outline 

profile to produce a minimum loss, the convex portion of the profile should be 

described by a polynomial of higher than 5-th, and the concave portion – than  

3-d degree. 

Let the order of the polynomial is n. In this case, the question of choosing the 

correct n-5 boundary conditions for the convex portion of the profile and n-3 

boundary conditions for the concave part. As such one can take, for example, 

the high-order derivatives (second and higher) in the points 
2C  and 

2K . Not 

stopping until the solution of this problem, assume that the boundary conditions 

are somehow chosen. 

Due to the fact that the number of points at which the boundary conditions 

are given, may be different for the convex portion and the concave profile (as 

mentioned above), for generality, we consider the task of determining the 

coefficients of the polynomial in the case of setting the boundary conditions in 

any number of points. 

This problem is formulated as follows: 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

176  http://www.sciencepublishinggroup.com 

required to find the coefficients of the polynomial 
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satisfying in the k points to n + 1 boundary condition 
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1x x : 
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Differentiating (5.7)       1 2max 1 , 1 , , 1kk k k     times by x. We 

assume in (5.7) and in the first 1k  , obtained by differentiating (5.7), the 

equations 
1x x , then (5.7) in the first and 

2 1k   equations 
2x x , etc. until 

you go through all the k points at which the boundary conditions are given. 

Every time we get a system of algebraic equations, which for the m-th point can 

be written as: 
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 (5.8) 

In the matrix form, this system can be presented as 

C A B  , 

where C – matrix of coefficients (5.8); A – unknown parameters column 

0 1 2, , , , na a a a ; B – right-hand sides of equations (5.8) column. 
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It is easy to see the elements of the matrix C, and the right-hand part column 

B may be determined by the following formulas: 

 
 

 

   

,

1

1,

1
1

,

1

1

1, 2, 3, ,
0, ;

, 1, 2, 3, , 1 ;

2, 3, 4, ,
, ;

, 1, , 1

, 1, 2, 3, , .

m

i j

j

j m

i
mj

i j m

S

i

i m m

j k
C

i j

C x j n

j k
C x j S

j i i n

b y j k










 
  

  
   


          
  



 (5.9) 

Now, if the index m in (5.8) will run from 1 to k, we arrive at a system of 

linear algebraic equations of order n + 1 relatively of unknowns 

0 1 2, , , , na a a a , the elements of the coefficient matrix and the right sides of the 

column which are determined by formulas (5.9). Solving this system of linear 

equations, we will determine the coefficients of the polynomial (5.7) separately 

for convex and concave profile parts. 

The area is calculated using the difference between the integrals of the curves 

describing the convex and concave portion of the profile. Be aligned with a 

given area can be varying wedge angle of the leading edge 
1 , repeating at the 

same time building a profile with the formulas (5.2), (5.3). 

The developed method of turbine profiles design allows the construction of 

an oblique cut with straight section. Such profiles can be used for supersonic 

expiration and work well in conditions other than nominal. 

5.2.2  Profiles Building Using Besier Curves 

A more simple and clear way to build the base curve is a Bezier curve (which 

is especially convenient for interactive construction of complex curves), but to 

automate profiling with its help some special measures should be taken. There 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

178  http://www.sciencepublishinggroup.com 

is no doubt also the fact that that the minimum of maximum curvature is a 

prerequisite for high aerodynamic qualities of turbine profiles cascades. In 

many cases, probably this criterion prevails over the condition of the absence of 

curvature jumps, as evidenced by still competitive CKTI profiles [33], designed 

from arcs and line segments. 

Based on these considerations, we will build a profile consisting of two 

circles describing the input and output edges and three Bezier curves, one of 

which forms the pressure side, and the other two – convex part, respectively, 

from the trailing edge to the throat and from the throat to the leading edge. 

Bezier curve that passes through two given end points and having at these 

points specified derivatives, will be called the base curve (BC). 

The simplest base curve satisfying the above requirements, a Bezier curve, 

based on the polygon consisting of two segments passing through the given 

points with a given slope (Fig. 5.2). It is not difficult to assume that the use of 

the support polygon of the two segments gives BC, having a very large 

maximum curvature. In addition, when the angle between segments tends to be 

zero, the maximum curvature increases indefinitely. 

  

Figure 5.2  Construction of Bezier curve 

by 2 points. 

Figure 5.3  Construction of Bezier curve 

in three basic segments. 

The next (and decisive) step to improving the base curve is the addition of 

one more segment, intersecting the first two (Fig. 5.3). 
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We introduce relationship 

1 3 2 4
;

1 0 2 0
f g

 
 

 
. 

The course of the base curve generated by polygon 1-3-4-2 much smoother. 

Furthermore, it is obvious that there must be optimum values of the parameters   

f and g. Indeed, at f and g, aspiring to unity, we have the case of two basic 

segments and a very large curvature in the central part of the curve, while f, and 

g, tending to zero, greatly increasing curvature at points 1 and 2. 

A disadvantage of the third order base curve construction is the need to 

determine the optimal combination of parameters f, g, which greatly slowed the 

process of the profile design. Fortunately, the coefficients can be calculated 

only once and tabulated for different combinations of angles (Table 5.1). Since 

the optimum base curves do not depend on the polygon orientation or the size, 

the calculations can be made for the polygon, whose base is the unit interval, 

which lies on the Ox axis. In addition, due to the obvious condition 

   1 2 2 1, ,opt optf g    , 

it is enough to store the data for only one optimal ratio. If you have a table of 

dependencies, the basic curves of sufficient quality are built almost instantly. 

Table 5.1  Optimal f and g coefficients for different angles. 

10 20 30 40 50 60 70 80 Angles 

0.66 0.60 0.70 0.76 0.80 0.80 0.78 0.75 10 

0.95 0.65 0.45 0.50 0.54 0.56 0.56 0.55 20 

0.95 0.95 0.62 0.85 0.89 0.91 0.92 0.91 30 

0.95 0.95 0.40 0.58 0.69 0.72 0.72 0.69 40 

0.95 0.95 0.40 0.50 0.53 0.57 0.59 0.57 50 

0.95 0.95 0.30 0.40 0.45 0.48 0.49 0.46 60 

0.95 0.95 0.20 0.37 0.40 0.38 0.37 0.36 70 

0.95 0.35 0.25 0.31 0.33 0.31 0.27 0.20 80 
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Profile is constructed from two circles that form the input and output edges, 

one of BC, which describes the pressure side, and the two BCs, describing the 

suction side. In this way, initial profiling parameters are listed in Section 5.2.1 

(Fig. 5.1). 

This information is sufficient to build the support polygons of the profile 

sections. Formulas for determining the coordinates of the corresponding points 

and angles do not differ from those given in the previous section. An algorithm 

for constructing the profile is very simple, but it has a major disadvantage: in 

the point of the throat, where two base curves are joined, it is possible 

discontinuity of curvature, which may lead to local deformation of profile 

velocity, and a sharp increase in the friction loss. There is a simple way to 

smooth BC docking at the throat. It lies in the selection of the unguided turning 

angle to match the curvature of parts at the throat point. Because of the high 

curvature sensitivity of the unguided turning angle, the variation turns minor. 

Determination of opt  is carried out by solving the equation 

   1 2D D     

by secant method. 

Elimination of the curvature jump in the throat requires only a few profile 

evolutions and a decision is reached very quickly. Built in such a way will be 

called the basic profile (BP). After a slight modification the algorithm also 

allows to construct suitable profiles with elongated front part. 

It should be borne in mind that the BP is not yet the final product, it is only a 

semifinished product intended for optimization of all the others, except for the 

initial, data. This optimization can be performed according to different criteria. 

In the process of BP constructing assumed the specified parameters with the 

exception of the unguided turning angle, which was chosen in such a way as to 
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eliminate the curvature jump at the throat. The remaining ten parameters can be 

varied to optimize a chosen cascade optimality criterion. 

In general, the problem of optimal design of a flat cascade can be written as: 

  min , XF X X . (5.10) 

Vector of variable parameters X should in some way describe the shape of the 

profile. Criterion F(X) is a functional on X. Restrictions on the range of 

admissible values of the vector X associated with strength and technological 

requirements cascade imposed on, which are, in particular, the shape and 

thickness of the input and output edges. Because of the sufficient simplicity of 

accepted method for calculating the tensile and bending stress in the blade 

section, they can be defined directly in the process of the profile shape 

optimization. However, we will stick to a different approach, considering 

approximately known basic cascade dimensions (chord, relative pitch, etc.) on 

the basis of the calculation described in section 5.1. 

Specifically, a vector of variable parameters includes the following 

characteristics which influence the configuration of the profile that is based on 

the procedure described in the previous section: 

 profile stagger angle; 

 relative pitch; 

 geometrical exit angle; 

 the radius of the leading edge; 

 wedge angle of the leading edge; 

 wedge angle of the trailing edge. 

Restrictions on the range of the parameter is written in the simplest form: 

 
min maxX X X  . (5.11) 
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If you wish to fix a component 
iX  we believe 

min maxi iX X . 

The most important point in the cascade optimization is the correct criterion 

of quality selection, which generally represents the minimum total loss of 

kinetic energy in the cascade taking into account the relative time of its 

operation at different flow regimes in a given stage of the turbine. In connection 

with this problem distinguish multi-mode and single-mode optimization 

solution requires the calculation of cascade flow and constituting losses therein, 

respectively, at set of modes or in one of them. 

As shown by previous studies, in some cases, an alternative criterion of 

aerodynamic quality can be geometric criterion of the profile smoothness. One 

could even argue that this observation even more relevant to a multi-mode 

optimization, than single-mode. The original method was developed in relation 

to the profiles submitted by power polynomials. 

5.3  Optimization of Geometric Quality Criteria 

When used for the formation of the profile contour of polynomials of degree 

n (n > 5 for the convex part of the profile, and n > 3 for the concave part) the 

question arises about the correct choice of the missing n–5 (or n–3) boundary 

conditions which must be selected on the basis of the requirements of 

aerodynamic profile perfection. 

One of the requirements of building the turbine profiles with good 

aerodynamic qualities is a gradually changing curvature along the outline of the 

profile [25]. Unfortunately, the question concerning the nature of the change of 

curvature along the profile’s surface, is currently not fully understood. 

As a geometric criterion for smooth change of curvature in the lowest range 

of change in the absence of kinks on the profile, you can take the value of the 

maximum curvature on the profile contour in the range 
2 1
,C Cx x 

   for the 
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convex and for 
2 1
,K Kx x 

   the concave parts, by selecting the minimum of all 

possible values at the profile designs with the accepted parameters and 

restrictions. The requirement for the absence of curvature jumps in the 

description of the profile contour by power polynomials automatically fulfilled 

as all the derivatives of the polynomial are continuous functions. Agree to 

consider determined based on the geometric quality criterion, the missing 

boundary conditions in the form of derivatives of high orders in points 
2C , and 

2K  components of a vector Y


. For the concave part of the profile vector of 

varied parameters Y  is as follows: 

  
2 2 2

3
, , ,

n

K K K KY y y y
  . 

For the convex part to the derivatives of high orders added geometrical exit 

angle 2g  and at constructor’s option unguided turning angle : 

  
2 2 2

5

2, , , , ,
n

C C C C gY y y y  
  . 

To construct the optimal profile is taken such a vector 
optY , which provides 

the minimum of the functional 

    maxF Y k , (5.12) 

wherein k – the curvature of the profile, and the maximum is searched for in the 

range 
2 1
,C Cx x 

   on the convex portion of the profile and 
2 1
,K Kx x 

   – on the 

concave part of the profile using one of the one-dimensional search methods. 

Formulated the problem of minimizing the functional (5.12) can be solved by 

the methods of nonlinear programming. In this case, a very successful was a 

flexible polyhedron climbing algorithm. 
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An algorithm for an optimal profile constructing using the geometric quality 

criterion is as follows: 

1. For the given values of the inlet and outlet edge radii 
1r  and 

2r , chord b, 

received or estimated using particular one of the recommended dependencies 

profile’s stagger angle 
s , the coordinates of the centers of inlet and outlet 

edges circles calculated using (5.1). 

2. Set the leading edge wedge angle 
1 . 

3. Select the initial approximation for 2g , , by which and adopted value of 

2  by the formulas (5.2), (5.6) the coordinates of the points 
1 2,C C  and D are 

determined, as well as their first derivatives. 

4. Determine the coefficients of the polynomial (5.7), which describes the 

convex portion of the profile. Wherein high order derivatives  

2 2 2

5
, , ,

n

C C Cy y y
   

are set as the initial approximation in the first step and refined during the 

optimization. 

5. By using one of the methods of one-dimensional search the maximum 

curvature max k  objective function value is found. Next on the program for 

searching the extremes minimum of the functional sought 

  maxF Y k . 

Minimum of the functional corresponds to the optimal value of the vector of 

varied parameters 
  

2 2 2

5

2, , , , ,
opt

n

C C C C gY y y y  
   by which at this stage of 

the profile building the coefficients of the polynomial (5.7) describing the 

profile’s convex part are determined. 
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6. From formulas (5.3) calculates the coordinates of the points 
1 2,K K , and 

their first derivatives. Varying the vector 
  

2 2 2

3
, , ,

n

K K K KY y y y
   by the 

means of optimization program a value 
optKY


 and the coefficients of the 

polynomial that describes the profile concave portion are searched. 

7. Determine the area of the profile  1f   and the discrepancy 

 1F f f  . Setting a new 
1  value, profiling process is performed again 

from step 3. As stated above, the minimum residual is achieved by using the 

"golden section" one-dimensional search of extremum procedure. 

It was also developed somewhat different algorithm for constructing an 

optimal profile of the geometric quality criteria. 

The main stages of the algorithm are as follows: 

1. Setting a constructive exit angle 2 arcsing a t  , define as a first 

approximation, the profile stagger angle in the cascade by the recommended [25] 

formula 

 1 2tg 0.2 0.8s g g     , 

and the coordinates of the centers of inlet and outlet edges circles 
1O  and 

2O , 

by using the specified values of the radii 
1r  and 

2r , the chord b. 

2. Calculating from the formula (5.4), (5.5) the edges wedge angles 
1  and 

2 , determine the coordinates of the points of contact 
1C  and 

2C  on the convex 

side, 
1K  and 

2K  on the concave part of the profile, as well as the first 

derivatives in them. 
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3. We determine the coefficients of the polynomial (5.7), which describes the 

convex portion of the profile. The derivatives of higher orders 

 

2 2 2

3
, , , ,

n

C C Cy y y
   necessary to determine the coefficients, are set as the initial 

approximation in the first step and refined during the optimization. 

4. Using the method of one-dimensional search of extremum – the "golden 

section" method in the range 
2 1
,C Cx x  the value of maximum curvature max k  

is found, the minimum of which is determined by the Nelder-Mead nonlinear 

programming method, changing the vector of varied parameters 

  
2 2 2

3
, , ,

n

C C C CY y y y
  . 

5. Constructing the convex portion of the profile, drop the perpendicular from 

the center of the circle 
2O  of the neighboring cascade profile trailing edge and 

determine the size of inter-blade channel throat 
2 2O D r . Having the difference 

between the obtained value and the predetermined throat 

   2
2

21
D O

D

D

x x
a y a r

y



   


, 

refine by the recommendations [25], the profile stall angle s  and constructive 

exit angle 2g : 

   2 2

tg
tg 1 ; 1

1 tg

si si
s g gi si

si si

i i
 

   
 


    


, 

where 

 
2

2
22

si

D O D

a

x x y


 

 

. 
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The process of the profile convex portion constructing continue from step 1 

until the throat is not held with the desired accuracy. 

1. Varying the vector 
  

2 2 2

3
, , ,

n

K K K KY y y y
  , using optimization in the 

range 
2 1
,K Kx x  the values of 

optKY  are sought as well as the coefficients of the 

polynomial, describing the concave part of the profile (points 3, 4). 

2. Determined the profile area  1f   and the discrepancy  1F f f  . 

Given a new value 
1  and profiling process is carried out again from step 2. 

Minimization of F residual is achieved by using an one-dimensional search of 

extreme. 

3. Using one of possible methods, profile velocity distribution and boundary 

layer are calculated. Profile quality control is carried out by the nature of the 

velocity distribution around its contours, the value of profile loss and the 

boundary layer separation criteria. 

The calculation of the velocity distribution around a plane cascade profile and 

loss coefficients made by sequentially the following tasks: calculation of 

potential ideal incompressible fluid flow around a flat cascade; approximate 

calculation of the compressibility of the working fluid; the boundary layer 

calculation and loss factor determination. 

Methods for potential flow of an incompressible ideal fluid calculation in the 

plane cascade can be divided into methods based on conformal mapping of the 

flow domain and methods of solving tasks given to integral equations [8, 22]. 

Considering the profile loss ratio pr  as the sum of the friction fr  and edge 

losses 
e  coefficients using proposed in [8] approximate formula for 

determining the value of the expression pr  can be written as: 
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** **

2

2 2

2
2 0.1

sin sin

ss ps

pr

r

t t

 


 


  , (5.12) 

wherein ** **,ss ps   – the momentum thickness on the convex (suction side) and 

the concave (pressure side) portions of profile. 

The calculation of the boundary layer can be produced by known methods of 

boundary layer theory [22]. There is reason to believe the boundary layer in real 

turbomachinery cascades fully turbulent. At least the treatment the boundary 

layer as turbulence do not gives low loss coefficient values in the cascades. 

Before values of Mach numbers M < 0.5, calculation of the boundary layer on a 

single cascade profile can produce satisfactory accuracy as an incompressible 

fluid [22]. As a possible formulas for the momentum thickness calculation can 

take the expression obtained in the solution of the turbulent boundary layer by 

L.G. Loytsyanskiy method 

 

0.85

** 0.15 3.55 4

2

0

0.0159Re

S

w w dS  
 

  
 
 , (5.14) 

where Re – Reynolds number; 
2w  – cascade output velocity; w(S) – the profile 

countour velocity distribution function. 

The integral in (5.14) is determined by a numerical method. Determined with 

the help of (5.14) the ** **,ss ps   values, and substituting them into (5.12), we will 

find the profile loss ratio. 

5.4  Minimum Profile Loss Optimization 

A more rigorous formulation of creating an optimal cascade profile problem 

that provides design parameters of the flow at the exit and meet the 
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requirements of strength and workability, is the problem of profiling, which 

objective function is the profile (or even better – integral) losses. 

As mentioned above, the profile loss ratio can be presented as the sum of the 

friction loss coefficients of the profile fr  and edge loss coefficient 
e . 

Given that the ratio of the edge losses associated with the finite thickness of 

trailing edges, the value of which is predetermined and is practically independent 

of the profile configuration, the objective function can be assumed as [8] 

 

** **

2

2
sin

ss ps

fr
t

 





 . (5.15) 

In terms of flow profile, you must set a limit, excluding the boundary layer 

separation. Unseparated flow conditions according to Buri criterion can be 

written as [22]: 

  
1**

**Re m
dw

B
w dS

 

  , (5.16) 

Where 
** **Re Re b . 

The constants B and m can be taken equal to: B = 0.013…0.020, m = 6. 

The task is set of determining the coefficients of the polynomials (5.7) 

for a description of the convex and concave profile with given geometric, 

strength and processability parameters so as to reach the minimum of the 

functional (5.15) and satisfy the constraints (5.16). 

Formulated the optimal profiling problem is essentially non-linear with 

inequality constraints and mathematically formulated as follows: 

    min , 0f Y g Y  , (5.17) 
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where 
    

2 2 2 2 2 2

5 3

2 1, , , , , , , , , , ,
n n

s g g C C C K K KY y y y y y y   
     vector of 

varied parameters objective function, whose role in the problem plays an 

equation for the coefficient of friction (5.12);  g Y  – constraint, which on the 

basis of Buri separation criterion (5.14), is defined as follows: 

    max ig Y g Y ; (5.18) 

 
, at 0;

0, at 0,

i i

i

i

G G
g Y

G


 


 

where 

  
**1

**Re im
i

ii

dw
G B

w dS

  
   

 
, (5.19) 

i = 0, 1, ..., 2n (2n – the number of points on the profile contour). 

Applying to the problem solution method the penalty functions method [3], 

we reduce the problem of finding the extremum in the presence of constraints to 

the problem without restriction. Form the generalized functional *I  

  *

frI g Y   , (5.20) 

where   – penalty coefficient. 

For the unconstrained minimization of the functional (5.20) Nelder and Mead 

algorithm was used [3]. 

An algorithm for constructing an optimal profile of the minimum profile loss 

is as follows: 

1. As the initial data for profiling on the basis of thermal calculation and the 

conditions of durability and adaptability the quantities are introduced:  
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a – throat inter-blade channel; b – chord; t – cascade step; f – profile square;  

1r  and 
2r  – input and output edges radii; 

2  – trailing edge wedge angle. 

2. An initial approximation for the leading edge wedge angle 1 , the stagger 

angle of the profile s , geometric (constructive) entry 1g  and exit 2g  angles, 

unguided turning angle , derivatives of higher orders 

   

2 2 2 2 2 2

5 3
, , , , , , ,

n n

C C C K K Ky y y y y y
    . 

3. Determines the coordinates of the points 
1 2 1 2, , , ,C C D K K , and their first 

derivatives. 

4. Sought the coefficients of polynomials describing the concave and convex 

portion of the profile according to the procedure set out in section 5.1. 

5. The profile area determined and, using one of the one-dimensional search 

methods, varying angle 
1 , a minimum of residual  1F f f   is found. 

The process of profiling is carried out from step 2. 

6. Calculate the profile velocity distribution, as well as the coefficient of 

friction fr  by (5.15) and the 
iG  value by (5.19). 

7. We call the routine of optimization for finding the minimum of the 

functional (5.20), each time making the profile area fit before the calculation of 

the objective function. A minimum of the functional (5.20) corresponds to the 

optimum value of the vector of variable parameters 

    
2 2 2 2 2 2

5 3

2 1, , , , , , , , , , ,
n n

opt s g g C C C K K KY y y y y y y   
    . 

8. The optimal profile construction is made, satisfying the strength, 

geometrical and technological constraints, and provides a minimum profile loss 

while maintaining the unseparated flow. By the designer’s wish optimization 
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may also be performed using the parameter t/b, and the trailing edge wedge 

angle 
2 . 

5.5  Optimal Profiling Examples 

The created profiling algorithms have allowed to design a series of profiles of 

turbine cascades. 

As a starting (1O) was taken the standard profile P2 with a high aerodynamic 

quality. Wherein were accepted such flow conditions that ensure the smallest 

possible profile P2 (1O) losses: 0.722t t b  , 
b  = 7626, 

1  = 2930. 

Retaining the basic, necessary for the machine profiling raw data 

 1 2 1, , , , , , ,bt b a f r r   with the help of the developed algorithms were 

obtained new profiles: 1MMC (for the geometric quality criteria – the minimum 

of maximum curvature) and 1MPL (the minimum of profile loss). 

From technological considerations subsequently profile 1MMC contour was 

approximated by the radii (Fig. 5.4, 5.5, Table 5.2). Fig. 5.6–5.8 shows the 

distribution of the velocity and the parameter B (the Buri boundary layer 

separation criterion) along the contours of the original and newly created profiles. 

The calculated profile loss pr  values correspondingly are 3.35, 3.16 and 

3.00%. Attention is drawn to the different law of the parameter B variation 

along the profiles contours. Apparently, the possibility of the boundary layer 

separation, or the intensity of its thickening (which leads to increased losses) 

must be judged not only by the maximum value of the parameter B, which 

(usually) achieved at cascade’s oblique cut, but also the character of its change 

within the channel prior bevel, particularly on the convex side of the profile. 
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For comparative testing of profiles 1O, 1MMC and 1MPL were chosen 

conditions of the original flow profile P2 (1O) which provide the smallest 

possible losses: 0.722t t b  , 
b  = 7626. 

All nominal dimensions of the experimental blades and cascades of 

considered profiles adopted respectively the same, namely a chord b = 42 mm; 

length of blade l = 120 mm; pitch t = 30.32 mm; channel throat a = 10.85 mm; 

the thickness of the trailing edge  = 0.66 mm. The stagger angles for the newly 

designed profiles 1MMK and 1MPP equaled stagger angle of the source profile 

1O. 

 

b  7626 
Bilateral 

points 

Coordinates, mm 
Bilateral 

points 

Coordinates, mm 

b, 

mm 
420,0 x y x y 

in 6,66 1 0,3334 4,7837 6 377,3304 174,9175 

out 1,5910–2 2 64,5584 118,8692 7 404,2919 104,6999 

C, mm 153,6276 3 128,4423 196,9085 8 419,9 12,7715 

t, mm 303,240 4 204,5439 244,4601 9 399,1575 4,6840 

f, sm2 479,962 5 324,6853 230,7689 10 6,0428 1,3995 

Figure 5.4  Profile 1MMC. 
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Table 5.2  1MMC profile parameters in the radiusographic form. 

Arcs 

Radii and centers coordinates 

of arcs, mm 
Arcs 

Radii and centers coordinates 

of arcs, mm 

R x y  R x y 

1-2 1057,0 951,6247 455,8897 6-7 277,5 134,1478 41,244 

2-3 455,0 446,4076 128,5415 7-8 750,0 325,8325 66,7955 

3-4 210,0 275,1959 46,7023 8-9 11,55 408,4469 11,5460 

4-5 137,7 250,8724 114,7901 9-10 242,99 203,8004 139,8127 

5-6 155,0 241,50 100,2534 10-1 3,33 3,33 3,33 

 

b  7626  
2OX , mm 3,33 

b, mm 420,0  
2OY , mm 3,33 

out, mm 6,66  2r , mm 3,33 

in, mm 1,5910–2  
1OX , mm 408,451 

C, mm 164  
1OY , mm 11,55 

t, mm 303,240  1r , mm 11,55 

f, sm2 479,0    

Figure 5.5  Profile 1MPL. 
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Figure 5.6  Distribution of velocity and 

parameter B along the 1MMC profile 

contour. Calculated profile loss coefficient 

pr  = 3.16%. 

Figure 5.7  Distribution of velocity and 

Buri separation criteria B along the 

1MPL profile contour. Calculated profile 

loss coefficient 
pr  = 3.35%. 

 

Figure 5.8  Distribution of velocity and parameter B along the 1MPL profile  

contour. Calculated profile loss coefficient 
pr  = 3.0%. 

In the blades manufacture the profile was controlled by the working patterns. 

The template fit appears on the projector using the drawing profile contour      

10 times increased relatively to the blade profile. When fit the profile by 

template contour clearance allowed not more than 0.04 mm. It should be noted 

that the difference in the contours of the most similar profiles 1O and 1MMC 

reaches 0.6 mm, i.e. an order of magnitude greater of the blades manufacture 

tolerance. Particular attention was paid to ensure a predetermined trailing edge 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

196  http://www.sciencepublishinggroup.com 

thickness. The admission to the size of the throat when building cascades was 

0.03 mm. Effective angle downstream was 2 arcsine a t    2055. 

The aim of the tests was to obtain comparative data on the profile losses 

factors pr  and exit flow angles 
2  in the subsonic region, at the range of Mach 

numbers 0.3…0.65, and different inlet flow angles 
1 . 

The comparability of the experimental results was ensured by making the 

blades and cascades in the same manner with the same requirements for 

precision and surface finish; cascade tests one the same test rig, using the same 

instrumentation and the measured data processing methods. 

The main test was preceded by methodological tests. On expiration mode of 

Mach 
2M T

 = 0.46, the measurements were carried out along the front of the 

cascade at different distances from the plane of output edges and in the three 

sections of the height of the blades. The values of certain kinetic energy loss 

factor pr  is calculated for the measurement intervals along the cascade front 

multiple of two, three and four steps of the blades. The results of such averages 

practically coincided, indicating that careful manufacture of blades and high 

quality cascades assembly. 

As a result of preliminary tests it was found that the averaged energy losses 

in the flow behind cascade will stabilize at a distance from the 0.25b of the 

trailing edges. Thus for a layer thickness of 20% of the blades height, 

symmetrical about their middle, the flow is very close to the flat. 

Final testing data of three experimental cascades were obtained by 

measurements on the middle section of the height of the blades at a distance 

equal to 0.285b from the trailing edges in the three-step interval. 
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Fig. 5.9 shows the experimental dependences of the cascade profile losses 

versus inlet flow angle 1 in the range of change from 26 to 41 at different 

Mach numbers ranging from 0.45 to 0.68, which corresponds to Reynolds 

numbers of Re = 3.9∙10
5 
to Re = 5.75∙10

5
. In these intervals profile losses curves 

of cascade made up of the original profile 1O, are located above the profile 

losses curve of newly designed cascade 1MMC. Both profiles have minimum 

profile loss at inlet flow angle 1  = 35. The magnitude of profile loss in the 

second cascade of 0.3…0.4% less than the first substantially throughout the 

whole range of variation of the input flow angle 1  in the specified range of the 

Mach number values. 

Wherein loss in each of the cascades 1O and 1MMC increasing against the 

minimum value of 0.8% in the case of 5 deviation of input flow from the 

optimum angle 1  = 35. The minimum profile losses amount of the cascade, 

composed from the newly designed blades 1MMC, optimized for geometric 

quality criterion, is 2.2 %. 

Profile losses of cascade, composed of profiles 1MPL, were slightly lower of 

cascades 1O and 1MMC at the nominal input flow angle 
1  = 2930. With the 

inlet flow angle decreasing, 1MPL profile advantage slightly increases. 

However, at the inlet flow angles 
1  > 30 profile 1MPL is worse than others. It 

should be emphasized that this profile losses factor curve vs input flow angle 
1  

in the investigated range of Mach numbers has a minimum at the angle            

1  = 2930, under which the profile 1MPL was designed. 

Fig. 5.10 shows the dependence of the angles downstream the cascades 
2  of 

the input flow angle 
1  at different Mach numbers. The newly designed cascade 

1MMC has the better match of the output flow angle 
2  with the effective 
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angle 2 arcsineff a t   value in the entire tested range. A similar pattern is 

observed for the cascade of 1MPL profiles within its region of advantages. 

 

Figure 5.9  Test results of cascades 1O (), 1MMC () and 1MPL ( ). 

Test conditions: b = 42 mm; t/b = 0.722; l/b = 2.857; a = 10.87 mm;   = 1.59∙10
–2

; 

b  = 7626. 

The another results of optimal profiling of cascades with converging and 

diffuser channels, as well as data of their experimental studies, can be found in 

[13]. 
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Figure 5.10  Test results of cascades 1O, 1MMC and 1MPL at different Mach numbers: 

 – 
2M 0.37T  ;  – 

2M 0.45T  ;  – 
2M 0.51T  ;   – .

2M 0.59T 
.
 

The results obtained to build the turbine cascades of a minimum profile loss 

authenticate the proposed statement of the profiling problem. Of course, for 

such problems more correct to take as an objective function the integral loss, 

what is the most naturally achieved involving computational aerodynamics 

models. 
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6.1  Problem Statement 

The rapid development of computational aerodynamics methods not only puts 

on the agenda introduction of the spatial calculations into the turbines design 

practice, but also raises the need to develop the blades shape and other turbine 

flow path elements optimization methods taking into account 3D flow [24]. 

Formulations of the blades spatial optimization problems, which essentially 

cannot be solved by using one-dimensional and two-dimensional models, for 

minimization of the secondary flows loses, arising at the tip and the hub of the 

blades, are of the greatest interest [35]. 

Analyzing the results of the research, three main reasons for formation of the 

secondary flows in the turbine cascades could be singled out: 

1) Turning of the flow. In channels with flow turning (including the turbine 

cascades) the transverse gradient of pressure arises, under influence of which 

whirlwind is forming at the ends of the channel. 

2) Interaction of the boundary layer, accumulated on the end wall in front of 

the blade with the leading edge of the blade. For this reason, a horseshoe-shaped 

whirlwind is formed, which is then divided into two parts on both sides of the 

blade. 

3) Vortex wedge. In almost every corner areas, which are generated between 

vortical structures and walls of turbine channel cascade, the forming or 

dissipating of corner vortexes may take place. Some from them are there 

constantly, some are dissipating depending rom the flow parameters and the 

type of the wedge. 

To the most important causes inducing the secondary losses, relate the 

following factors: 
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1) natural accumulation of the boundary layer on end wall at the entrance till 

the lines of detachment; 

2) braked the detachable bubble in the field of entrance edge between two 

lines of the detachment; 

3) increasing the new boundary layer after the line of detachment; 

4) losses in the corners between the high and low pressure sides and end wall 

(the most significant losses are situated in the corner between the low pressure 

side and end wall); 

5) influence of tangential stresses along the 3D lines of detachment; 

6) loss caused by tangential stresses between the channel vortex and the low 

pressure side of the blade, as well as the process of mixing of the crosscut flow 

with the flow in the channel along with a three-dimensional line of detachment; 

7) dissipation of all vortexes and complete mixing of heterogeneous flow 

field at the cascade exit. 

Such a complex character of the influence of secondary flows on cascade 

losses requires investigation of means of their minimization through appropriate 

selection of the blades shape in the end zones. Management of the end 

phenomena may be implemented by changing the shape of the profile along the 

height of the blades, using the complex tangential lean, profiling of the form of 

the flow path, utilization of the additional aerodynamic elements in channels 

between the blades. 

The most evident way to control the flow nearby the ends of the blades is a 

lean. The simple problem statement of lean optimization involves 

parameterization of the blades shape by means of deformation of the stacking 

line in accordance with the chosen law. Selection of the deformation parameters, 

using one of the methods of direct search, leads to the definition of a profile 
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shape that ensures minimum integral losses in the cascade. Despite its apparent 

simplicity, this approach requires overcoming several problems associated with 

the efficiency of the solving of the putted task, in particular: rapid and reliable 

ways of building a parameterized blades and corresponding with them 

calculation grids in the blade passages; development of the mechanisms of data 

exchange with CFD-solvers; elaboration of recommendations for solver settings, 

providing sufficient accuracy and speed of calculations; the choice of 

optimization method, usable for solving the problems with difficult computable 

objective functions and with various kinds of restrictions. 

6.2  Representation of Blades Geometry 

6.2.1  File Formats for Blades Storage 

Sources of geometric information related to turbines blades are quite varied. 

These can be drawings in the paper or electronic form, the results of 

measurement of coordinates of the dots multitude, using mechanical or laser 

devices, coordinates of cross sections by flat or conical surfaces. 

When the surface of the blade is represented by sets of dots its conical 

(cylindrical for axial machines) cross sections, it is assumed that the program, 

taking this information, will build the splines on cross sections and then will 

stretch the spline on surface. In this sense, this description is procedural. 

In particular, the BladeGen preprocessor (Ansys CFX) offers two format of 

procedural form of the blades storing – RTZT and CURVE. Because the 

information in the CURVE file is not enough for permanent storage of data of 

the blade wheel, we have developed its extension – CUR format. It additionally 

includes the number of blades in the crown, the number of the cross sections 

and the number of the profile sectors in the cross sections, the number of dots in 

the sectors, etc. 
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Figure 6.1  Fragment of the blade wheel stored in the CUR format  

(4 sectors on the profile). 

The number of sectors on the contour of the cross section can be 1, 2 or 4. In 

the first case, the surface of the blade is formed by one spline. Accordingly, in the 

second and third cases, the blades is formed by two (suction and pressure sides) or 

four (suction side, leading edge, pressure side and trailing edge) spline segments. 

The order and type of splines (for example, interpolation or approximation) 

are not stored in a file, because these options are implementation-dependent. 

They must be specified in the reading procedure. A fragment of the blade wheel, 

described using the CUR format with four sectors in each of the five initial 

cross sections of the blade, is shown at Fig. 6.1. The cross sections, shown at 

Fig. 6.1, came out as a result of spline-approximation of original dots (dots on 

the sites have different colors). 

6.2.2  Stacking 

The process of drawing up the blades from known cross sections (flat or 

cylindrical) is called stacking. To do this, specific point of each cross section, 

which coincides with the stacking line of this cross section, must be selected. 

Often, for convenience, the centers of the edges or the centers of gravity of the 

cross sections are chosen as stacking points (Fig. 6.2). In general, this selection 

can significantly change the shape of the blades. 
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Any deviation of the stacking line from radial location will be named lean. 

With a simple lean stacking line remains straight and is characterized by a 

single parameter –the angle of incline. When we have a complex lean it can take 

   

a b c 

Figure 6.2  The simplest methods of the blade forming: a – radial center of gravity;  

b – radial center of inlet edge; c – radial center of outlet edge any form.  

There is distinguishing among axial and tangential lean. 

For easy use, it makes sense to limit parameterization of stacking line by 

Bezier curves. 

6.2.3  Forming the Lateral Surfaces of the Blades 

The surface of the blade is described by the parametric functions-interpolation 

or approximation B-splines based on two parameters: u-along the contour of 

each cross section and v-along the direction of stacking. Interpolation spline 

passes exactly through all dots of cross-section of the blade, and approximation 

spline – in accordance with supporting polygon, which is build using the dots of 

cross section or by least squares method [36]. All dots of the surface can be 

found, when u and v parameters taking the values from 0 to 1. In some cases, it 

is required to allow extrapolation towards the staking and then the v parameter 

may become a bit less than 0 or greater than 1. 

The blade can be described either by one surface or by several. In our 

implementation (as already noted) 2 or 4 surfaces, that can be useful for some 

applications, in particular, when constructing grids, are allowed. Since there is no 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

208  http://www.sciencepublishinggroup.com 

joining on surface boundary, the junction’s error could be managed only changing 

the spline order along u and v directions. It is usually within the range 2…5. 

   

a b c 

Figure 6.3  The blade surface formation, using one (a), two (b) and four (c) surfaces. 

6.2.4  Three-Dimensional the Turbine Blade Parametric Model 

One of the key elements of the 3D aerodynamic optimization of the turbine 

cascades algorithm is the turbine blade model parameterization, which consists 

in the possibility of changing blade shape (curvature) by variation of the limited 

number of numeric parameters that describes the stacking line. 

The Bezier curve of 3-d (method I) and 4-th order (method 2) it seems 

convenient to use as the binding line. The second method allows creating a 

stacking line with practically straight-line the middle segment. (Fig. 6.4, 6.5). The 

number of independent variables in both cases can be reduced to two (
hY  and 

sY ). 

Parametric model of turbine blades must provide an opportunity to check the 

mass flow through the cascade. This requires incorporation in the model 

parameter, which allows controlling the mass flow during optimization. Most 

eventually the last gives the possibility to ensure equality of the mass flow 

between initial and optimized cascades with the same flow parameters before 

and after cascades. The changing of stagger angle of the blade, relative to the 

original, can be taken as such parameter. 
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Figure 6.4  Bezier curves of 3-rd and 4-th order. 

In addition to complex lean, the simple lean was implemented in methodical 

aim, which consists in turning of the turbine blades profiles relatively of the 

axis of rotation of the turbine on the specified angle. In general, developed 

parametric model of turbine blade allows producing its curvature in the 

circumferential (tangential) direction as well as in axial direction, 

simultaneously or separately. 

  

Method 1 Method 2 

Figure 6.5  Shapes of the blades with complex lean. 

6.2.5  The Grids Construction 

As it is known, the results of the CFD calculations may depend on the type of 

calculation grids. One of the tasks, needing to be addressed, is to build up a 

three-dimensional parametric calculation grids, satisfying the form of 

parameterized blades. 

Yh Y0 

Ys Y1 

Y0 Yh 

Ym 

Ys Y1 

z 

y 
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Fast and reliable building of the parametric calculation grids is an integral 

part of the optimization studies as it implies the calculation of a large number of 

variants of the geometry of the turbine cascade. Since the developed algorithm 

of optimization should not be tied up with solitary CFD-solver, a specialized 

grids builder has been developed. 

We will describe in details the work with H-grids, which represent a 

convenient compromise between complexity of the grids creation and quality of 

the obtained solutions when flows computation in turbomachine cascades occur. 

H-grid topologically is equivalent to the cube. Therefore, a data structure is 

simple enough for description. It intentionally is made redundant to accelerate 

frequently meeting operations. This, of course, slightly reduces the maximum 

size of the grid when a limited amount of RAM available to the computer, but it 

is not critical to the solving problem. 

The structured calculation grid for channel between the blades is obtained 

because of deformation in the direction of each of the coordinate axes of a 

rectangular parallelepiped (in space) or rectangle (flat case). 

Inter-blade channel is formed by concave and convex sides of the two 

adjacent blades (or profiles in the planar case). For selecting the high pressure 

and low pressure sides of the blade, the blade is made up by two splines, 

connecting in the points of minimum and maximum x-coordinate sections. 

Parametric lines v = const of these splines give the calculated coordinates of D 

sections of the grid in the radial direction. Next inter-blade channels are 

supplemented by input and output sections of the specified length, representing 

segments of the rings (for circumferential blade cascade) or parallelepiped (for 

flat cascade).The resulting area in each section is split up to cells of grids in the 

direction of x-coordinates dimension L. On the inlet and outlet sections is 

usually taken by L/4 cells. Other cells are located on the profile and coordinates 
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of the nodes are calculated by interpolation spline via dots of the splines of the 

high and low pressure sides. 

Finally, channels are split on H sections along the directions x = const, that 

completes the structured grid formation. In the process of grid building a 

primitives numbering (nodes, edges, verges, and cells), topological ties 

formation and geometrical data calculation are made. All information is entered 

into a data structure. 

 

Figure 6.6  The spatial H-grid of inter-blade channel 32816 with thickening  

in three directions. 

As such, the calculated grids are not yet suitable for conducting reliable 

calculations of viscous flows in the blades cascades. They should be improved 

in order to fit the peculiarities of the flow near the walls of the channel. 

Thickening structured grid is performed independently for each of the 

coordinate directions. Law of deformation of the grid can be different and 

should reflect the physical characteristics of the flow in the area of thickening. 

For example, near the wall polynomial law for changing the grid can be used, 

which corresponds to the rate of changing the velocity in the boundary layer. In 

the area of input and output edges the deformation may be exponential in nature 

that is less aggressive. In either case, a number of parameters controlling the 
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thickening as for the rate of deformation as well as the ratio of the sizes of areas 

of the channel subject to or not to distortion should be entered. 

In general three-dimensional case, the grid, suitable for calculations of 

viscous flows, is presented at Fig. 6.6. 

6.2.6  File Format for Grids Storage 

The diversity of formats creates some difficulty in reading these files by 

different CFD-applications. CGNS-standard for CFD calculations data storage 

is positioned as a "common, portable and extensible”. Software implementation 

of the standard is an open, cross-platform and well documented that, in principle, 

precludes differences of various applications. 

Data in CGNS format are stored in binary form and access to it is 

implemented through a set of functions for reading, writing, and modifying of 

the contents of the files which can be called from application in different 

programming languages. In general case CGNS file can contain data which is 

associated with viscous compressible fluid flow, but suitable for solutions of the 

Euler equations and potential flows. 

The standard includes the following data types: structured, unstructured 

hybrid grids; data of the CFD calculations; information on the sub-grids 

docking or overlapping; boundary conditions; descriptions of equations of state, 

turbulence models etc.; nonstationary solutions, including deformation of 

calculation grids in time; dimension of variables; variables reference points; 

history of calculations; user’s and other data. 

For the purpose of specific tasks solution there is no need to implement in 

full all the functionality, supported by the CGNS (this is not currently doing 

even such advanced products like CFX). It is enough, for example, organize 

saving of the structured grids and setting of the boundary conditions, satisfying 

the terms of the calculation task. This significantly speeds up the preparation of 



◆◇     Chapter 6  Application of Computational Aerodynamics for Blades Shape Optimization     ◇◆ 
 

http://www.sciencepublishinggroup.com 213 

data for CFD calculations. Analysis of output information, perhaps, you might 

need to implement by means of post-processors of used packages, since not all 

of them conserve the results of calculations in CGNS format. 

6.3  CFD Tools 

For realization of the optimization algorithm, using CFD-calculations, it is 

necessary to choose the right program product. 

Well known program complex ANSYS CFX includes in it pre-processor,  

post-processor and the solver. 

ANSYS CFX Solver has the following characteristics: 

 numerical methods: finite volume discretization of equations; solution of 

the complete three-dimensional unsteady Navier-Stokes equations; 

difference schemes of 1-2order; the joint solution of the equations of 

conservation of mass and moment; algebraic multigrid method for solving 

the linearized equations; support of the elements of various types – 

hexahedrons, prisms, pyramids, tetrahedrons; adaptive thickening of grids; 

movable and changing grids; 

 model of turbulence: algebraic model; model k–ε; k–ω model; model SST; 

Reynolds stress model; method of large vortices LES; method of not 

attached vortex DES. 

The program complex ANSYS CFX has the following level of support for 

CGNS format: 

 preprocessor supports only reading of grids and names of edges of the 

computational domain; 

 solver does not support the reading of CGNS files, but allows to convert 

the results of calculation in CGNS format; 
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 post-processor supports the reading of the calculation results. 

The preprocessor is used for entering the CGNS files and setting the 

boundary conditions for each variant of blades geometry, even when the 

boundary conditions and calculation parameters are identical. 

Calculation in ANSYS CFX-Solver is made then. 

Processing and the analysis of results takes place in postprocessor, using 

macros that are intended for determination of the values, required in the process 

of optimization. 

6.4  Algorithm of Spatial Aerodynamic Optimization of the 

Blade Cascades of Axial Turbines 

The proposed method of optimization of the cascades is based on the joint 

usage of the formal macromodeling and LP search and includes the following 

steps [37]: 

The plan of computing experiment is created [1, 2]. In the given range of 

variable parameters, defining a stacking line, the points, in which computations 

will be carried out, are determined. 

The blades matching of the plan points parameters are constructed and 

computation domain and grids are generated. 

Values of objective function for each combination of parameters are 

determined. For this purpose CFD computation and post-processing of results 

are carried out. 

Coefficients of a full square-law polynomial type (1.2) or (1.12) of objective 

function and restriction function in the set range of varied parameters are 

determined. Using LP search the minimum of value losses in the cascade
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 , ,h s sY Y   is determined, under condition that the mass flow through it 

satisfies the condition  , ,h s sG Y Y Gorg   . 

The scope of varied parameters has been changed: 

а) if the minimum of the objective function appears on the border of the range 

of variation parameters, the last is displaced aside of this boundary; 

b) if the minimum of the objective function are inside of the range, but 

macromodel is not sufficiently precise, the range decreases; 

c) if the minimum function falls within the range and macro-model is 

accurate enough, checking CFD-calculation is carried out and if its results with 

sufficient accuracy coincide with optimization results on macromodel, 

optimization is completed, otherwise the range decreases. Repeat pt. 1–4. 

6.5  The Impact of Simple Tangential Lean on the Flow 

Through the Turbine Circumferential Cascade 

 

Figure 6.7  Researched blade profile TC-1A. 
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It is known that the lean along the flow leads to increasing secondary flow 

losses on the periphery and to reducing them at the root. Lean against the stream 

leads, correspondingly, to the opposite result. 

The lean to the opposite flow direction allows to alter the distribution of flow 

parameters along height, so that the leakages in the axial gap is reduced on the 

periphery, that positively affects stage efficiency. 

As an object of research the circumferential guide blade cascade was chosen 

with the profiles TC-1A (Fig. 6.7) with the following parameters: 

0.26 m; 0.715; 0.864; 61 ; 0.49h t sb t t l b      

and centering on the input edge. 

Boundary conditions: 

 inlet: 
2 *

0 0102240 Pa; 373.15 KP T  ; 

 the degree of turbulence 1%; 

 outlet: 
2 81861PaP  ; 

 the blade and the ends of the channel: impermeable wall with condition of 

sticking the flow; 

 working medium: air. 

In the investigated guide blade cascade boundary conditions correspond to 

subsonic flow with Reynolds number at outlet equals 2∙10
6
. 

Fig. 6.8–6.10 shows the results of calculations with lean angles  = –30; –20; 

–10; 0; 10; 20; 30 (negative lean means the lean against the direction of the 

flow and positive – the lean in the direction of the stream). 
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Obviously, that the total losses are increasing when there is negative lean and 

decreasing with the positive lean. Exit angle of the flow and the mass flow rate 

is increasing as with positive and with negative lean. 

The mode of the changing of the actual outlet flow angle is shown at          

Fig. 6.11. Positive lean leads to an increase in the actual outlet flow angle near 

the root and decrease on the periphery; negative lean brings to the opposite 

effect. Given the nature of allocation of the losses along height of the blade as a 

lean result (Fig. 6.12), possible to say that an increase of the outlet flow angle 

leads to the secondary losses reducing. 

G, kg/s 

γ, deg 

Figure 6.8  Change of the integral 

losses coefficient from lean. 
Figure 6.9  Change of the integral actual 

outlet flow angle from lean. 

γ, deg γ, deg 

δ, % , deg 

Figure 6.10  Change of mass flow rate from lean. 
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Figure 6.11  Distribution of actual outlet flow angle along the blade height. 

 

Figure 6.12  Distribution of losses coefficient along the height behind  

cascade with different blades leans. 

An increase of the mass flow rate, as with a positive and with a negative lean 

occurs due to an increase in the integral actual outlet flow angle. In addition, 

with positive lean into increase of the mass flow rate also contributes reducing 

the integral losses and, accordingly, with a negative lean increasing of the losses 

slightly brings down increasing the mass flow rate, which takes place as a result 

of increase of the outlet flow angle. 

The reasons for this significant changing of flow parameters with lean of the 

blades may be explained by the distribution of static pressure with various leans 

l  

, der 

l  

, der 
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in the control plane (Fig. 6.13). Isolines of static pressure in all cases are located 

almost vertically. 

 

 

Figure 6.13  The contours of the static pressure at control plane at different leans:  

а – 0; b – –30; c – 30. 

In the cascade without lean (Fig. 6.13) the pressure gradient along the height 

of the blade is virtually absent, unlike the blades with lean (Fig. 6.13b and     

Fig. 6.13c). Negative lean (see Fig. 6.13b) leads to pressure gradient appearance 

along the height of the blades, directed from the periphery to the root and on the 

suction side of the blade it is more substantial than on its pressure side. Positive 

lean brings to appearance of the opposite to the direction of pressure gradient at 

the surface of the blade (Fig. 6.13c). 

6.6  The Influence of Complex Tangential Lean on the Flow 

in Circumferential Turbine Cascade 

Object of study and boundary conditions are identical to the turbine cascade, 

that described in the previous section, with the exception of the relative height 
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of the blade, which in this case amounted to l/b = 0.714. Complex lean was 

carried out according to 2-nd method without changing the stagger angle of the 

profile. 

Using proposed algorithm (section 6.4) the optimal blade’s shape of the 

specified turbine guide blade was found on the sixth step of the variation 

parameters range refinement. 

All 56 configurations of turbine blades shape were counted. 

To solve the same problem using genetic algorithm, probably, hundreds of 

calculations would have required. The Table 6.1 shows the best value of the 

varied parameters and the best value of target function for each of the 

optimization stages. 

At the 1–5 stages optimization of minimum objective function fall on the 

border range of variation parameters, at that on 4-th phase the function is 

minimal on the right edge of the border of variation parameters range, while on 

5-th phase the function is minimal on the left edge. As a result, after the 6-th 

phase the values of the optimal parameters became 0.77sY   and 0.80hY  . 

Table 6.1  History of optimization studies. 

Stage Initial 1 2 3 4 5 6 

Range, Ys 0 0,02–0,18 0,16–0,25 0,25–0,38 0,38–0,73 0,73–1,58 0,65–0,94 

Range, Yh 0 0,02–0,18 0,16–0,25 0,25–0,38 0,38–0,73 0,73–1,58 0,67–0,98 

Ys 0 0,18 0,25 0,38 0,73 0,73 0,77 

Yh 0 0,18 0,25 0,38 0,73 0,73 0,8 

ς, % 4,4010 4,3360 4,3025 4,2506 4,1688 4,1688 4,1687 

Fig. 6.14 shows isolines of the objective function in the space of parameters 

sY  and 
hY . 

Lines of equal values of the objective function have incomplete shape due to 

the fact, that the obtained values of the function are distributed unevenly, and 
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most of them are situated in the neighborhood of line 
s hY Y . Dots on the       

Fig. 6.14 display the values of the parameters 
sY  and 

hY  on every stage of the 

optimization study. Comparison of Fig. 6.14 and Table 6.1 allows to see how 

the history of the changes 
sY  and 

hY  looks like. 

Partial filling in by the calculation points of depicted area associated with 

large labour-intensive calculations and inability to evenly fill in the entire area. 

However, the carried out calculations are sufficient to argue that the domain of 

the minimum values of the target function was found. It is located near the 

center of the study area. 

Fig. 6.14 shows that the objective function in the domain of minimum values 

has been changing slightly, which means that there is some freedom in choosing 

the optimal values of 
sY  and 

hY . 

 

 

Figure 6.14  Isolines of integral losses. 

Fig. 6.15 depicts the distribution of the losses coefficient of kinetic energy. 

δ, % 

Ys 

Yh 
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Analyzing these data, you can see that the peaks, characterizing horseshoe 

vortices in the optimal cascade, become less manifested and slightly have 

shifted in the direction of the flow center. Further confirmation of this is the 

distribution of the actual outlet flow angle in the optimal cascade (Fig. 6.16). 

Indeed, looking at the optimized turbine blade (Fig. 6.17), we can see that in 

the bottom part of the blade the positive lean takes place and the negative lean 

has place at the top. It gave the possibility to obtain, predicted in the previous 

subsection, pressure distribution in the blade passage (Fig. 6.18) and on the 

suction side of the blade (Fig. 6.19), in other words, to combine the positive 

effects from simple leans, excluding the negative implications. 

  

Figure 6.15  Distribution of the losses 

coefficient along the blade height. 

Figure 6.16  Distribution of the outlet 

flow angle along the blade height. 

Some calculated characteristics of initial and optimized blade cascade has 

shown in the Table. 6.2. It is worth to note that mass flow rate and actual outlet 

flow angle has changed, and this changing is in the order of 10%. Changing of 

the outlet flow angle and, as a consequence, the mass flow rate is connected 

with changing of flow structure in the cascade and with reduced losses. 
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Table 6.2  Characteristics of the initial and optimal cascade. 

Blade cascade Mass flow rate, kg/s 1, degree ςtotal, % 

Initial 0.9936 10.11 4.970 

Optimal 1.0922 11.30 4.497 

As a result, it can be stated that the proposed method gave the possibility to 

find the global minimum of the function, but the increase of the mass flow rate 

in the optimal cascade by almost 10% is unallowable. 

Figure 6.17  Optimal cascade. 
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Figure 6.18  The contours of the static 

pressures at the control plane in the 

optimal cascade. 

Figure 6.19  The contours of the static 

pressures at the low pressure side of the 

optimal cascade. 

Control plane 
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So in further when conducting optimization this should be taken into account 

and the changing of the mass flow rate should be restricted by imposing an 

additional parameter of variation 
s . 

6.7  Optimization with the Mass Flow Rate Preservation 

Through the Cascade 

Review of research on the application of the complex tangential lean and its 

optimization, as well as conducted computational research has shown that using 

of complex lean gives the possibility to increase aerodynamic efficiency of 

turbine cascades. However, as previously noted, research on optimization of 

complex tangential lean with preserving mass flow rate through the cascade 

with high precision, currently we do not have. Using developed optimization 

approach it is possible to preserve in optimal cascade mass flow rate at the level 

of the initial cascade with a high accuracy. 

Complex tangential lean reduces integral losses by reducing secondary losses. 

It is known, that with increasing l b  there is a reducing in the part of the 

secondary losses in integral losses and, accordingly, the benefit from 

optimization has to diminish. 

Relative height criterion was taken not l b , but the cascade’s characteristic 

relation a l , by analogy with the flows in the swivel tubes of rectangular   

cross-section. 

Optimization problem is solved using two methods of stacking line 

parameterization. Research of the efficiency of the algorithm consists in 

attempts of optimization of turbine cascade at different 0,16; 0,23; 044a l   by 

changing of the blade height. It should be noted that for the blades with 
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0.16a l   optimization, using both methods of stacking parameterization, no 

longer led tot he reducing losses compared to the cascade without lean. 

The size of the throat varies slightly due to the changing of stagger angle of 

the profile, which is associated with the preserving of the mass flow rate. 

Special attention was given to the FMM accuracy, since it determines the 

validity of the results obtained with used optimization approach. Criterion of the 

accuracy is deviation of the values of the target function and the constraint 

function, which we obtain in FMM and in checking CFD calculation. 

6.7.1  Optimization with Various a/l Using Method 1 

The results of the optimization for a/l = 0.44 

Taking into account the experience of previous studies, in Table 6.3 the 

ranges of parameters variation have shown. The correctness of their choice is 

confirmed by the fact that the optimal combination of varied parameters falls in 

this range already at the first step of the optimization. 

Table 6.3  Ranges of variation of parameters optimization. 

Parameter min max 

sY  0.2 0.5 

hY  0.6 0.9 

s , degree 0 0.5 

Then, a plan is created in accordance with the algorithm and relevant CFD 

calculations are produced (Table 6.4). The objective function – integral losses δ, 

restriction function – mass flow rate through the calculation channel G. 

A potential imperfection of the proposed optimization approach can be 

precision of the obtained FMM. Checking CFD calculation of optimal variant 

shows that the accuracy of the FMM is high because the objective function 

optimal values, projected by FMM, and restriction function with high enough 
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precision coincide with their values received as a result of CFD calculation 

(divergence in δ is 0.005%, and in G – 0.017%). Differences of the mass flow 

rate in optimal and initial variant, based on the results of the CFD calculations, 

is 0.014%. 

Table 6.4  Results of the optimization using method 1 for 0.44a l 
.
 

Parameters s
Y  

h
Y  

s
 , degree , % G, kg/s 

Initial 0 0 0 6.46483 0.288864 

1 0.500 0.900 0.250 6.06853 0.290430 

2 0.500 0.600 0.250 6.12689 0.286293 

3 0.200 0.900 0.250 6.12155 0.288312 

4 0.200 0.600 0.250 6.19087 0.284589 

5 0.500 0.750 0.500 6.17293 0.280340 

6 0.500 0.750 0 6.01586 0.296079 

7 0.200 0.750 0.500 6.23117 0.278370 

8 0.200 0.750 0 6.07275 0.294141 

9 0.350 0.900 0.500 6.17547 0.281387 

10 0.350 0.900 0 6.01665 0.297062 

11 0.350 0.600 0.500 6.23770 0.277339 

12 0.350 0.600 0 6.08898 0.293340 

13 0.350 0.750 0.250 6.11509 0.287041 

opt. FMM 0.495 0.799 0.249 6.08030 0.288855 

opt. CFD 0.495 0.799 0.249 6.08063 0.288905 

Turbine cascade, obtained as the result of optimization, is shown at Fig. 6.20. 

The losses of the optimal cascade were reduced on 0.384% in absolute value or 

on 6.31% in relative value. 

The distribution of the coefficients of losses and the actual outlet angles along 

the height of the blades for the initial and the optimal variants are represented at 

Fig. 6.21 and 6.22 respectively. These figures show that increasing of the losses 

in optimal variant took place in the central part of the cascade along with 
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reduction of the losses at the end areas, while actual outlet angle, on contrary, 

decreased in the central part and at the end areas. 

 

Figure 6.20  Optimal cascade obtained using method 1 for 0.44a l  . 

  

Figure. 6.21  Distribution of the losses 

coefficient for a/l = 0.44. 

Figure 6.22  Distribution of the outlet 

flow angle for 0.44a l 
.
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Table 6.5  Ranges of the variation of optimization parameters.  

Parameter min max 

sY  0.25 0.45 

hY  –0.05 0.15 

s , deg –0.10 0.40 

The results of the optimization for a/l = 0.23 

Optimization results by method 1 at 0.23a l   were quite unexpected. Initial 

ranges of variation of parameters optimization were far from the final result. For 

this reason, the optimal variant was received only on the fifth stage of the 

optimization. Ranges of variation of parameters optimization of the fifth step 

are shown in the Table 6.5. Thus, to obtain the optimal variant in this case, 

65 CFD calculations were required plus the calculation of initial variant and 

checking CFD calculation. 

The appropriate calculation’s plan for the fifth step with the results of 

determining the value of the target function, and restriction function listed in the 

Table 6.5. 

Losses deviation between optimal variants for FMM and CFD made up  

0.020% and the corresponding deviation of G in relative terms made up 0.006%. 

The mass flow rate was preserved with an accuracy of 0.004% in relative terms. 
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Table 6.6  Results of the optimization using method 1 for a/l = 0.23. 

Parameters s
Y  h

Y  s
 , degree ,% G, kg/s 

Initial 0 0 0 5.45888 0.603025 

1 0.450 0.15 0.15 5.32876 0.604827 

2 0.450 –0.05 0.15 5.37593 0.599889 

3 0.250 0.15 0.15 5.38874 0.598860 

4 0.250 –0.05 0.15 5.44175 0.595029 

5 0.450 0.05 0.40 5.45634 0.586522 

6 0.450 0.05 –0.10 5.25013 0.617545 

7 0.250 0.05 0.40 5.51989 0.581216 

8 0.250 0.05 –0.10 5.31001 0.611905 

9 0.350 0.15 0.40 5.46201 0.585955 

10 0.350 0.15 –0.10 5.25297 0.616883 

11 0.350 –0.05 0.40 5.50755 0.581701 

12 0.350 –0.05 –0.10 5.30059 0.612414 

13 0.350 0.05 0.15 5.38528 0.598818 

opt. FMM 0.408 –0.0379 0.0816 5.35769 0.603015 

opt. CFD 0.408 –0.0379 0.0816 5.35660 0.603049 

Turbine cascade, obtained as the result of the optimization, is shown at       

Fig. 6.23. The losses of the optimal cascade were reduced on 0.102% in 

absolute value or on 1.89% in relative value. 

 

Figure 6.23  Optimal cascade obtained using method 1 for a/l = 0.23. 
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Figure 6.24  Distribution of the losses 

coefficient for a/l = 0.23. 

Figure 6.25  Distribution of the outlet 

flow angle for a/l = 0.23. 

6.7.2  Optimization with Various a/l Using Method 2 

The results of the optimization for a/l = 0.44 

In this case were taken the ranges of parameters variation listed in the     

Table 6.7. 

The solution was obtained in the first step of the optimization. The results of 

calculation using optimization method 2 have shown in the Table 6.8. 

Table 6.7  Ranges of variation of parameters optimization. 

Parameter min max 

sY  0,2 0,5 

hY  0,7 1 

s , deg 0 0,5 
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In this case, losses deviation between optimal variants for FMM and CFD 

made up 0.006%, and the corresponding deviation of G in relative terms made 

up 0.017%. The mass flow rate was preserved with an accuracy of 0.017% in 

relative terms. 

Table 6.8  Results of the optimization using method 2 for a/l = 0.44. 

Parameters s
Y  h

Y  s
 , degree , % G, kg/s 

Initial 0 0 0 6.46483 0.288864 

1 0.5 1 0.25 6.22297 0.287388 

2 0.5 0.7 0.25 6.24602 0.284416 

3 0.2 1 0.25 6.27384 0.287651 

4 0.2 0.7 0.25 6.28318 0.284258 

5 0.5 0.85 0.5 6.29683 0.277681 

6 0.5 0.85 0 6.15406 0.293667 

7 0.2 0.85 0.5 6.36221 0.277942 

8 0.2 0.85 0 6.19314 0.293665 

9 0.35 1 0.5 6.33226 0.279469 

10 0.35 1 0 6.16875 0.295172 

11 0.35 0.7 0.5 6.34015 0.276185 

12 0.35 0.7 0 6.18533 0.292074 

13 0.35 0.85 0.25 6.24891 0.285655 

opt. FMM 0.498 0.856 0.154 6.19839 0.288865 

opt. CFD 0.498 0.856 0.154 6.19875 0.288914 

Turbine cascade, obtained as the result of the optimization, is shown at       

Fig. 6.26. The losses of the optimal cascade were reduced on 0.266% in 

absolute value or on 4.20% in relative value. 
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Figure 6.26  Optimal cascade obtained using method 2 for a/l = 0.44. 

  

Figure 6.27  Distribution of the losses 

coefficient for a/l = 0.44. 

Figure 6.28  Distribution of the outlet 

flow angle for a/l = 0.44. 

Comparing increasing of aerodynamic efficiency using methods 1 and 2, we 

can conclude that for this turbine cascade with a/l = 0.44 method 1 is more 

preferred because its use has significantly reduced integral losses. 

The distribution of the coefficients of losses and the actual outlet angles along 

the height of the blades for the initial and the optimal variants are represented at 

Fig. 6.27 and 6.28 respectively. These figures show that increasing of the losses 

in optimal variant took place in the central part of the cascade along with 
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reduction of the losses at the end areas, while actual outlet angle, on contrary, 

decreased in the central part and at the end areas. 

The results of the optimization for a/l = 0.23 

Ranges of variation of parameters optimization are shown in the Table 6.5. In 

this case, the optimal variant was obtained at the first step of optimization. 

Table 6.9  Ranges of variation of parameters optimization. 

Parameter min max 

sY  0.25 0.45 

hY  0.40 0.60 

s , deg 0 0.50 

The plan of calculations with the results of determining the value of the 

objective function, and the restriction function listed in the Table 6.10. 

In this case the losses deviation between optimal variants for FMM and CFD 

made up 0.032% and the corresponding deviation of G in relative terms made 

up 0.008%. The mass flow rate was preserved with an accuracy of 0.009% in 

relative terms. 

Turbine cascade, received as the result of the optimization, is shown at       

Fig. 6.29. Losses in the new cascade made up 5.314% that on 0.145% in 

absolute value or on 2.69% in relative value is smaller than in the initial variant. 

Application of the optimal complex lean by the method 2 when a/l = 0.23 

resulted in a reduction of losses in end areas, but in the core of the flow losses 

remained almost unchanged. On contrary, actual outlet angle decreased in the 

central part of the cascade and increased in the end areas, the same as in the 

previous cases. 

Thus, the optimization method 2 gave the possibility to reduce integral losses 

greater than method 1. 
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6.7.3  Reasons of Increasing the Efficiency of Optimized Cascades 

Consider the flow in the initial cascade for a/l=0.23. Comparing the field of 

the total pressure at the value of 0.96l   and 0.5l   of the initial blade     

(Fig. 6.32), it can be seen that the thickness of the boundary layer in the similar 

areas much less at the height 0.96l   of the blade than in the core flow. 

At the same time, the boundary layer thickness on its low-pressure side plays 

an essential role in the losses formation on the blade. This agrees well with the 

corresponding graphs of the losses coefficient distribution in height of the blade 

(see. Fig. 6.30). 

Explanation of the reducing of boundary layer thickness in indicated areas at 

the periphery and the root can be given based on the analysis of the flow on the 

suction side of the blade (Fig. 6.33). On Fig. 6.33 line S marked the line of 

detachment of the channel vortex. 

Table 6.10  Results of the optimization using method 2 for a/l = 0.23. 

Parameters s
Y  h

Y  
s , degree , % G, kg/s 

Initial 0 0 0 5.45888 0.603025 

1 0.450 0.600 0.250 5.29505 0.602551 

2 0.450 0.400 0.250 5.35124 0.596915 

3 0.250 0.600 0.250 5.32629 0.601706 

4 0.250 0.400 0.250 5.38373 0.594765 

5 0.450 0.500 0.500 5.41731 0.583745 

6 0.450 0.500 0 5.22568 0.615261 

7 0.250 0.500 0.500 5.45064 0.582208 

8 0.250 0.500 0 5.25427 0.613547 

9 0.350 0.600 0.500 5.41036 0.586293 

10 0.350 0.600 0 5.21395 0.617685 

11 0.350 0.400 0.500 5.46167 0.579785 

12 0.350 0.400 0 5.26454 0.610895 

13 0.350 0.500 0.250 5.33404 0.598298 

opt. FMM 0.407 0.408 0.143 5.31201 0.603023 

opt. CFD 0.407 0.408 0.143 5.31373 0.602973 
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Figure 6.29  Optimal cascade obtained using method 2 for a/l = 0.23. 

  

Figure 6.30  Distribution of the losses 

coefficient for a/l = 0.23. 

Figure 6.31  Distribution of the outlet 

flow angle for a/l = 0.23. 

 

 

Figure 6.32  The field of the total pressure in the initial cascade. 

l = 0,5 

l  = 0,96 
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It is the line of distinction of the two main border flows on the suction side of 

the blade: 

1) flow along the blade from the leading edge to the trailing edge; 

2) cross-over flow, that comes from the ends of the channel and penetrates, 

due to its inertia, on the blade (this flow is a part of the peripheral and root 

channel vortices) (Fig. 6.34). 

Thus, on the suction side of the blades, there are areas with variously formed 

boundary layers. This explains the different thickness of the boundary layer in 

the appropriate places on the suction side of the blade. 

As a result, the important conclusion can be formulated: the channel vortex 

leads to the formation on the suction side of the blade up to the line S of the 

boundary layer thickness less than the thickness of the boundary layer of the 

main flow around the blades. Thus the secondary flows have not only negative, 

but a positive effect, and properly distribution the stream structure can be used 

for creating optimal forms of turbine blades. 

From the last considerations, it is possible to prove the reduction mechanism 

of aerodynamic losses for turbine cascade by applying optimal complex lean: 

the complex lean leads to the movement of the line S in the direction of the flow 

core and therefore to increasing the areas with smaller losses. 

 

Figure 6.33  Stream lines on the suction 

side of the initial blade. 

 

Figure 6.34  Stream lines of the 

secondary flow of the initial blade. 
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Displacement of the line S, when using complex tangential lean, takes place 

because of pressure gradient appearance on the suction side of the blade, which 

occurs when complex tangential lean is used. The result of this aerodynamic 

effect is certain offset of the saddle point from the pressure side of the blade to 

the suction side, therefore, to more earlier descent of the channel vortex from 

the end of the blade to the blade itself (Fig. 6.35). Descended on the blade, 

vortex, in turn, under the influence of pressure gradient slightly shifted on the 

blade toward the core of the flow, that leads to an increase of the part of the 

flow on the suction side of the blade with a smaller boundary layer than in the 

core of the flow. 

As a result the proposed optimization algorithm made possible to find the 

optimum position of the line channel vortex detachment on the suction side of 

the blade by complex the lean optimization. 

  

a b 

Figure 6.35  The move of the channel vortex on the suction side: а – initial cascade;  

b – optimal cascade using method 2. 
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In this chapter, as an example of practical use of the developed theory of 

optimal design of axial turbines flow paths, the results of the studies, related to 

the optimization of parameters of flow path of the high pressure cylinders (HPC) 

of 220, 330 and 540 MW capacities turbines, operating at nominal mode, as 

well as examples of optimization turbo-expander and low pressure turbine of 

gas turbine unit, taking into account the mode of its operation, are presented. 

The entire complex of calculation research was conducted using mathematical 

models of flow path (FP) of axial turbines, described in Chapter 2. 

In addition, in the studies variants of mathematical models of FP "with the 

specified profiles" [38] were also used, which allowed with more accuracy 

determine geometric characteristics of turbine cascades, in particular, the inlet 

geometric angles of working and nozzle cascades, that are changing with the 

changing of stagger angles of the profiles. The latter had a significant impact on 

the amount of additional losses related to the incidence angle of inlet flow of 

working fluid. 

7.1  Multi-Criterion Optimization of HPC of Powerful 

Steam Turbines at Nominal Operational Mode 

7.1.1  A Preliminary Study of Influence of Quality Criteria Weights 

Coefficients on the Optimization Results 

Practice of the optimal design of axial turbines cylinders has showed that 

when optimizing steam turbine cylinder with extraction of working fluid for 

regeneration and heat supplying at least two criteria – the efficiency of the 

cylinder flow path and its capacity must be taking into account [38, 40-42]. 
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Using the convolution of quality criteria in accordance with (1.37) allows 

efficiently solve the multi-criterion optimization problems corresponding the 

Pareto front. 

As an example of the effectiveness of the use of convolution (1.37) the results 

of the optimization of HPC FP of a powerful steam turbine by two criteria - 

power and cylinder efficiency for different values of the weight coefficients i

are presented in Table 7.1 and Fig. 7.1. 

Table 7.1  Optimization results with different weight coefficients of the optimization 

criteria for power (
N ) and efficiency (

d
 ). 

The optimization task number N
  

d
  N, MW d

 , % 

1 0 1 124.398 82.49 

2 0.2 0.8 124.981 82.23 

3 0.4 0.6 125.844 81.77 

4 0.5 0.5 126.436 81.07 

5 0.6 0.4 126.804 80.15 

6 0.8 0.2 127.173 78.50 

7 1 0 127.288 77.82 

 

 

Figure 7.1  Pareto front solutions of the optimization task with two criterions for  

HPC FP powerful steam turbine. 
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Numbers on the curve corresponds to the numbers of optimization problem in 

the Table 7.1. 

7.1.2  Optimization of HPC Parameters of the 220 MW Capacity 

Turbine for Nuclear Power Plant  

The number of optimization parameters – 33: 

 level 1 (cylinder) - optimized for 19 parameters: 

 Root diameter and height of the nozzle blades of the first stage of the 

cylinder. 

 Meridional disclosing of the channels of the nozzle and working 

cascades. 

 Effective exit angles of the nozzle and working cascades of all turbine 

stages. 

 2-nd level (stage) - optimized for 14 parameters: 

 The number of the blades in the nozzle cascades for all turbine stages. 

 The number of the blades in the working cascades for all turbine stages. 

Quality criteria applied when optimizing – the criterion vector that inclu-des 

the normalized values of internal relative efficiency of the cylinder (
oi ) and its 

power (N) with equal weight coefficients. 

The results of the optimization of the HPC FP of the 220 Mw capacity 

turbine [39] are listed in Table 7.2 and in Fig. 7.2, where 
d  – Moliere diagram 

efficiency of FP;   – the ratio of efficiency of the stages to Moliere diagram 

efficiency of the initial variant of the cylinder; 
oi  – internal efficiency of FP; 

oi  – gain of the internal efficiency of the optimal FP; N – power; N – the 

power gain of the optimal variant of the HPC FP. 
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Table 7.2  The integral indicators of initial and optimal variants of FP. 

Variant of HPC FP d
  oi

  N, MW oi
 , % N, kW 

1 Initial, 6 st. 0.7836 0.7690 119.425 0 0 

2 Optimal, 7 st. 0.8096 0.8011 125.375 3.21 5949.45 

3 Final, 7 st. 0.8063 0.7961 124.824 2.71 5399.06 

 

  

a b 

Figure 7.2  A comparison of the power (a) and (b) efficiency of the initial and optimal 

variants of stages of HPC FP 220 MW capacity turbine. 

Improvement of the quality indicators of the optimized FP obtained through: 

 rational distribution of the cylinder heat drop, having in its disposal, 

between the stages; 

 some decreasing of the axial speed components and ensuring closer to 

axial outlet working fluid from the stages, resulting in reducing the exit 

velocity losses; 

 reducing the incidence angles, that provides the improving efficiency of 

the nozzle and working cascades; 

 increasing the mean diameter of the stages, that led to obtaining the 

optimal values of the ratio of the velocities (
0u C ); 

 reducing the specific weight of the losses near the hub and the shroud 

boundaries by increasing the height of the blades; 
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 the optimal value of the nozzle and working cascades relative pitch, which 

also led to an increase of their effectiveness. 

The final variant is obtained by optimization taking into account the 

technological restrictions on the production of the flow path parts. This explains 

the slight decreasing of efficiency and cylinder capacity compared to the best 

option without restrictions. 

The optimal variant of HPC FP of the 220 MW capacity turbine for nuclear 

power plant is obtained, which characterized by high perfection levels of 

aerodynamic indices, providing a boost of power on 5.4 MW, of internal 

efficiency on 2.71% and Moliere diagram efficiency on 2.27% as compared to 

the initial version of FP. 

7.1.3  Optimization of High-Pressure Cylinder Parameters of the  

330 MW Capacity Turbine 

The number of optimization parameters – 55: 

 level 1 (cylinder)-optimized for 44 parameters: 

 Root diameter and height of the nozzle blades of the first stage of the 

cylinder. 

 Meridional disclosing of the channels of the nozzle and working 

cascades. 

 Effective exit angles of the nozzle and working cascades of all turbine 

stages. 

 2-nd level (stage)-optimized for 11 parameters: 

 The number of the blades in the working cascades for all turbine stages. 
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Quality criteria applied when optimizing – the criterion vector that inclu-des 

the normalized values of Moliere diagram efficiency of the cylinder ( d ) and 

its power (N) with equal weight coefficients. 

The results of the optimization of the HPC FP of the turbine 330 MW 

capacity turbine are listed in Table 7.3 and in Fig. 7.3, where 
d  – Moliere 

diagram efficiency of FP;   – the ratio of efficiency of the stages to Moliere 

diagram efficiency of the initial variant of the cylinder; 
oi  – internal efficiency 

of FP; 
oi  – gain of the internal efficiency of the optimal FP; N – power;  

N – the power gain of the optimal variant of the HPC FP. 

Table 7.3  Integral indicators of initial and optimal variant of HPC FP. 

Variant of HPC FP d
  

oi
  N, MW oi

 , % N, kW 

Initial 0.8595 0.8119 95.573 0 0 

Optimal 0.8989 0.8656 101.773 5.37 6200.0 

Improvement of the quality indicators of the optimized FP obtained through: 

 more rational distribution of the cylinder heat drop, having in its disposal, 

between the stages; 

 application of the optimal configuration of meridional shape of FP with a 

slightly reduced heights blades; 

 increasing value of the effective nozzle exit angles, providing the 

reduction of the incidence angles on the working cascades; 

 improving the efficiency of working cascades through the optimal choice 

of stagger angles and numbers of the blades, resulting in a significant 

reduction of losses from the incidence angle; 

 reducing the degree of reaction level of the stages and, as a consequence, 

reducing the losses from root and radial leakages. 
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a b 

Figure 7.3  Comparison of the power (a) and (b) efficiency of the stages of initial and 

optimal variants of HPC FP of the 330 MW capacity turbine. 

Practical application of the developed optimization theory provided the 

solution of the task: the optimum variant HPC PF of the 330 MW capacity 

turbine was obtained, which characterized by high perfection levels of 

aerodynamic indices, providing a boost of power on 6.2 MW, of the relative 

internal efficiency on 5.76% and Moliere diagram efficiency on 3.94% in 

comparison with the initial version of FP. 

7.1.4  Optimization of the HPC Flow Path Parameters of the  

540 MW Capacity Turbine 

Features of the initial variant of the HPC FP: 

 FP of the 9 stages HPC has high enough quality integral indicators, which 

have been achieved thanks to the very high level of aerodynamic 

perfection of the flow path of the cylinder: 

 numbers of the nozzle and working cascades blades are close to the 

optimal values; 
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 the inlet flow incidence angles at the nozzle and work cascades are 

close enough to the possible minimum values given used profiles and 

blades production technology; 

 the root degrees of reaction provide fairly low levels of hub leakages; 

 the use of highly effective radial seals has significantly reduced radial 

leakages. 

However, in the construction of FP reserves of possible efficiency gains were 

identified associated with not quite rationally distribution of disposable heat 

drop between the cylinder stages and somewhat inflated level of root leakages 

in first stage. 

The number of optimization parameters of HPC FP of the turbine 540 MW 

capacity – 55: 

 level 1 (cylinder) - optimized for 37 parameters: 

 Root diameter and height of the nozzle blades of the first stage of the 

cylinder. 

 Meridional disclosing of the channels of the nozzle and working 

cascades. 

 Effective exit angles of the nozzle and working cascades of all turbine 

stages. 

Due to the fact that in the initial variant of the HPC FP number of the nozzle 

and working cascades blades near by the optimal values, the second level of 

optimization (stage) was not used in this task. 

Quality criteria applied when optimizing – the criterion vector that includes 

the normalized values of Moliere diagram efficiency of the cylinder (
d ) and its 

power (N) with equal weight coefficients. The results of the optimization of the 

HPC FP of the turbine 540 MW capacity are listed in Fig. 7.4, where N – power 
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and   – the ratio of efficiency of the stages to Moliere diagram efficiency of 

the initial variant of the cylinder. 

 

  

a b 

Figure 7.4  Comparison of the power (a) and efficiency (b) of the stages of initial and 

optimal variants of HPC FP of the 540 MW capacity turbine. 

Improvement of the quality indicators of the optimized FP obtained through: 

 a more rational distribution of the disposal cylinder heat drop, between the 

stages, thereby improving the integral indicators of the cylinder quality; 

 some decrease of axial velocity component and ensuring closer to axial 

outlet of working fluid from the stages, that reduced the exit velocity 

losses, improving inlet conditions for nozzles cascades (which led to an 

improvement in their effectiveness); 

 close to optimal values of velocities ratio (
0u C ), obtained by incre-asing 

the mean diameter of the stages; 

 reduction in the share of the losses near the hub and the shroud boundaries 

associated with increasing the heights of the blades; 

 using in 6–9 stages of the blades a highly effective 1MMC profile 

(Chapter 5), which provided a good matching flow inlet angles and the 
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geometric inlet angles of the working cascades, that resulted in increasing 

their efficiency; 

 obtaining the optimal twist laws of the e2  angles at the outlet of the 

working wheels of 6–9 stages that contributed to the rational distribution 

of the gas-dynamic parameters along the radius of these stages. 

So, the practical application of the developed optimization theory secured the 

solution of the requested task: the optimum variant of HPC FP of the 540 MW 

capacity turbine was obtained, which characterized by high perfection levels of 

aerodynamic indices, providing a boost of power on 1.4 MW, of inner 

efficiency on 1.52% and Moliere diagram efficiency on 1.63% in comparison 

with the initial version of FP. 

7.2  Optimal Design of the Axial Turbines Flow Paths 

Taking into Consideration the Mode of Operation  

For demonstration of opportunities of the developed complex of the methods, 

algorithms and mathematical models for solving the problems of optimal design 

of the turbine units taking onto account their mode of operation [38, 40–42] the 

results of optimization research of turbine expander flow path and of gas turbine 

unit GTU GT-750-6M low pressure turbine flow path are presented below. 

7.2.1  Optimization of Rendering Turbine Expander Unit (RTEU) 

Flow Path of 4 MW Capacity With Rotary Nozzle Blades  

In gas pipelines, natural gas is transported under the pressure  

35–75 atmospheres. Before serving the natural gas to the consumer its pressure 

must be lowered to the level of pressures local supply systems. At the moment 

gas distribution stations widely are using technologies of utilization of natural 

gas let-down pressure before serving the consumer. To extract energy from 

compressed gas the special rendering turbine expander units (RTEU) are used in 
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which the potential overpressure energy is converted into mechanical work of a 

rotor rotation of a turbine, which serves as generator drive. 

Seasonal unevenness of natural gas consumption, usually caused by 

environmental temperature, leads to a deeply no projected RTEU operation 

modes and adversely affect their performance and service life. For example, the 

gas flow through the flow path of the RTEU during the year may vary in ranges 

from 0.25–0.35 to 1.05–1.25 from the rated value. The foregoing attests to the 

relevance and necessity of taking into account the factor variability of operation 

loads during the selection of the basic geometric parameters of the RTEU FP. 

This section provides results of optimization of 4-stage flow path of existing 

design of RTEU taking into account real operation modes of it, using the 

developed algorithm [40]. 

Operating conditions of the considered RTEU are characterized by significant 

monthly uneven mass flow rate of the working fluid through the flow path of 

the unit with fixed heat drop and rotor speeds: 

 full gas pressure at the inlet of FP ............................ 
*

0 1.2P   МPа; 

 full gas temperature at the inlet of FP ...................... 
*

0 110t  C; 

 static gas pressure at the outlet of FP ....................... 
2 0.19P   МPа; 

 the rotor turbine speed .............................................. n = 8000 rpm. 

The mass flow rate of natural gas, depending on the operating mode, changed 

in the range from 4.94 to 20.66 kg/s (the mass flow rate at the design mode is 

16.66nomG   kg/s). 

At present several ways to regulate the mass flow through the RTEU FP are 

known. The changing of the walk-through sections of nozzle cascade (NC), 

thanks to the use of rotary nozzle blades, is the most effective. 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

252  http://www.sciencepublishinggroup.com 

It is known that the implementation of the rotary nozzle blades can 

significantly extend the range of workloads of the turbine installation and 

improve performance indicators of FP. However, to get the maximum effect 

from the rotation of the nozzle blades, there is a need to further address the 

challenge of defining optimal angles e1  for each stage, depending on the 

operating mode of the RTEU FP. 

In accordance with the terms of the design, mass flow regulation of the 

working fluid through the flow path of the RTRU has been carried out by 

turning of the nozzle blades (changing the outlet angles 
1e ) of all stages. 

Optimization was carried out taking into account the 12 operational modes of 

turbine expander (one month duration of each mode). The mass flows of natural 

gas through the FP for the specified modes are shown in the Table 7.4. 

Table 7.4  The natural gas mass flows through the RTEU FP for  

specified operational modes. 

# 1 2 3 4 5 6 7 8 9 10 11 12 

G0, 

kg/s 
18.71 20.66 18.71 10.18 6.33 6.28 4.94 6.14 7.17 10.55 17.57 20.35 

Two levels of recursive optimization algorithm (section 1.2.1) – "Cylinder" 

(Layer 1 and Layer 2) and "Stage" were involved in the optimization process. At 

the level of "Cylinder" recursive optimization algorithm is called on not only for 

"Stage" level but for Layer 1 and Layer 2. As can be seen from Fig. 7.5, at the top 

level "Cylinder" (Layer 1) the vector of varied parameters of created FMM has 

been generated from 16 parameters, one of which is operational mode (the mass 

flow at the cylinder inlet – 0G ) and the remaining 15 are design parameters. 

They included effective outlet flow angles from nozzle and blades (
1e ,

2e ), 

and average diameters and heights of the blade wheel cascades (
2D  and 

2l ). 

Mean diameters and heights of nozzle wheel cascades (
1D  and 

1l ) for each 
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stage were determined based on values similar to the parameters of the blade 

wheel cascades taking into account recommendations about overlap size for 

each RTEU stage. At the below laying level "Stage" for each stage except the 

first the vector of varied parameters of FMM was formed of 9 parameters 

(
2 2 1 2, , , ,D l  

0 1,2 1,2, ,u C z b ). For the 1-st stage the dimension of FMM vector 

is equal 8 (angle 1  isn’t a member of FMM of the 1-st stage). 

 

Figure 7.5  The structure of optimal design technique. 

The sequence of the general optimization task solution looks as follows. 

Previously, using the DOE theory (paragraph 1.3) the FMMs of the level 
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"Stage" were created in the form of full quadratic polynomials (1.2). The FMM 

of the "Cylinder" level (Layer 1) was build next. 

According to a design of experiment matrix from top level "Cylinder" to level 

"Stage" parametrical restrictions in the form of values 
2 2 1 2 0, , , ,e eD l u C   

arrive. Concrete level of these parameters is defined by a current point of the 

plan of numerical experiment of level "Cylinder" (Layer 1). At level "Stage" 

taking into account the arrived parametrical restrictions local optimizing tasks 

by definition of optimal values of blades numbers (
1,2z ) and chords values (

1,2b ) 

of nozzle and blade wheel cascades of each stage are solved. 

The received optimal values of these parameters are passed to the top level 

"Cylinder" (Layer 2) for calculation of the optimal angles 
1e  along the FP 

depending on the mass flow of working fluid at the entrance to the turbine 

expander. 

At the end of the optimization process under optimal values of       

"Cylinder"-level parameters, except values of chords and numbers of blades, 

inlet metal angles of nozzle and blade wheel cascades of each stage are 

specified. The values of the specified angles are defined taking into account a 

weight part of quality criterion of each operational mode. 

As quality criterion for an estimation of the flow path efficiency at the level 

"Cylinder" the value equal to total work of the cylinder for a selected period of 

time one year (T) 

  
0

t T

cyl

t

U N t dt





  , (7.1) 

defined according to the developed mathematical model (section 2.2.3), was 

used. 
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Given the assumption that the duration of the modes is the same, this 

criterion was reduced to the sum of the "regime" cylinder capacity (
1

n
i

cyl

i

N


 , 

where n is the number of modes). To assess the quality criterion at "Stage" level 

the internal relative efficiency of the corresponding stage was used. 

Since this task was solved for the FP with standard type of the nozzles 

profiles H-2, changing the angle 
1e  takes into account and corresponding 

changing of the inlet metal angle of the nozzle wheel cascade ( 0g ). When 

calculating the losses, associated with incidence angles at the inlet of the 

cascade, the influence of the blade’s inlet flow angle on the losses in accordance 

with experimental data was taken into account. 

Inlet metal angles of the blade wheel cascade for each stage were determined 

by averaging their values across 12 modes of operations taking into account 

weight proportion of quality criterion of each mode. 

The values of the "basic" design parameters, obtained by solving the general 

optimization task, are listed in the Table 7.5. 

The received distributions of angles 
1  for each stage of the flow path as 

functions of mass flow change are presented in Fig. 7.6. Apparently from       

Fig. 7.6 optimal curves of angles differ greatly from the linear curve received at 

uniform simultaneous turn of nozzles. 
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Table 7.5  Results of optimal design along stages of the turbine expander. 

Parameter 

Stage number Stage number 

Prototype Optimal design 

1 2 3 4 1 2 3 4 

D1, m 0.48 0.48 0.48 0.48 0.481 0.483 0.489 0.498 

D2, m 0.48 0.48 0.48 0.48 0.482 0.484 0.49 0.499 

l1, m 0.0305 0.035 0.0425 0.051 0.029 0.036 0.045 0.056 

l2, m 0.031 0.0375 0.0465 0,056 0.032 0.039 0.049 0.06 

β2, degree 22 25.7 29.1 34 21.7 25.52 28.43 34.15 

z1 54 54 46 46 54 58 48 49 

z2 69 69 53 53 69 78 61 59 

b1, mm 35.099 35.099 42.118 42.118 35.345 35.257 42.034 42.761 

b2, mm 30.809 30.809 40.15 40.15 33.25 30.179 39.187 40.754 

β1g, degree 30.75 35.68 44.03 53.72 38.21 32.27 38.97 48.31 

 

Figure 7.6  Optimal distribution of angles 
1  along the flow path subject to mass flow. 

Efficiency of an initial design of the flow path with synchronous turn of all 

nozzles and efficiency of the design received as result of optimal design with 

the optimal law of angles 1  change by operation modes are presented in      

Fig. 7.7. The efficiency of the received flow path essentially surpasses 

efficiency of initial flow path on all operation modes (Fig. 7.7). Significant 

improvements in efficiency has been observed in the low mass flow modes of 
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operation (up to 5%), as well as to the modes of mass flow greater than 18 kg/s. 

Additional generation of electricity for operating cycle is equal to            

914.793 MWh (3.64%). 

It is obvious, that it is impossible to create the flow path equally well working 

in a range of loadings from 30 to 125% of the nominal. So the efficiency of any 

flow path on modes with low mass flows remains at low enough level due to the 

great values of incidence angles, negative degrees of reaction, a substantial 

redistribution of disposable heat drop, offset 
0u C  of the stages aside from 

optimal values. 

 

Figure 7.7  Efficiencies of turbine expanders. 

The gain of optimal variant, in comparison with initial variant of design, on 

modes with low mass flows is provided by selection of optimal angles 
1  for 

all nozzle cascades along the flow path. As can be seen from Fig. 7.6 for 

optimal variant of RTEU FP, when small mass flow rate, value of the 1-st stage 

angle 
1e  significantly lower compared to the values of the same angles of 

subsequent stages, that increases its heat drop and value of output velocity from 

the nozzle cascade (velocity 
1c  close to the speed of sound 

1
Mc  = 0.997). 



◆◇     Optimization of the Axial Turbines Flow Paths     ◇◆ 
 

258  http://www.sciencepublishinggroup.com 

Despite some deterioration in the effectiveness of 1-st stage, this solution 

allowed unload the subsequent stages and significantly improve their work 

conditions (positive degree of reaction on the mean radius of the second and 

third stages has been achieved) and get a positive final outcome. 

On operation modes with the mass flow close to or surpassing on-design, 

increase of efficiency of the flow path became possible due to selection of an 

optimal combination of "base" design parameters ( 1,2 1,2 1 2 1,2 1,2, , , , ,g eD l z b  ) for 

each stage. This helped to reduce the losses associated with the inlet of the 

working fluid on the cascades and exit velocity losses, as well as to improve the 

efficiency of the nozzle and blade wheel cascades. Also on the considered 

operation modes there is a redistribution of heat drops between the stages: 

reducing load of 1-st and 4-th stages and increasing load of 2-nd and 3-rd. 

7.2.2  Optimal Design of Gas Turbine Flow Path Considering 

Operational Modes 

In the current section the example of applying developed methods and 

algorithms for the solution of the problem of optimization of gas turbine flow 

path taking into account the modes of operations is given. As the object of study 

the gas turbine installation GТ-750-6M was chosen [40]. This GTU is used at 

the compressor station as a driver of gas-compressor unit. Selection of the 

specified unit is linked to the fact that such installations are quite widespread in 

the gas transportation system of Ukraine and more than 80% of them exhausted 

its resource.  

In addition, the authors had at their disposal all the necessary project 

documentation and the results of the field tests of the manufacturer that was the 

necessary condition for optimization and the validation of the computational 

research results. 
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Optimization of FP of the low-pressure turbine installation GT-750M was 

carried out taking into account the actual operating loads and the inclusion in 

consideration of the thermal scheme (TS) of installation. 

A direct one-dimensional flow model through the axial turbines FP     

(section 2.2.3) and the procedure of thermal schemes calculation of GTU 

(section 2.5) were involved in this case. A screenshot of a window of the 

specialized CAD system with active project of GT-750M installation is 

presented at Fig. 7.8. One-dimensional mathematical model of the turbine 

stages group is used in the process of solving common optimization tasks and to 

build the universal characteristics of the gas turbines, and the model of 

thermodynamic processes in thermal schemes of GTU – for thermodynamic 

calculation of the unit’s thermal cycle (TC) for real operating modes. 

 

Figure 7.8  Project of GT-750M installation in a specialized CAD system environment. 

Thermal cycle scheme consists of the following main elements: compressor 

(C); combustion chamber (CC); high pressure turbine (HPT), located on the 
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same shaft with compressor; free power turbine low pressure (LPT); regenerator 

(R); external consumer of net power – natural gas blower (B). 

As can be seen from Fig. 7.8, GT-750-6М is a split-shaft gas turbine unit 

with waste-heat recovery. 

Such a scheme, thanks to good surging characteristics, is more flexible, 

reliable and cost-effective in terms of variable operating mode and can be 

equally well applied for driving propeller, for ground transportation, for blast 

furnace production etc. When operating on the gas pipeline such a gas turbine 

unit can provide any mode of operation of the gas pipeline without throttling at 

the suction and without pressure lowering of the blower. 

For operation modeling of the compressor and turbine, while calculating on 

the various modes the universal characteristics were used. Moreover, the 

characteristic of the compressor was built according to the manufacturer’s data 

but turbines characteristics were obtained using specialized CAD system. 

Fields on the characteristics of high and low pressure turbines covering 

ranges of operating modes of FP, obtained by calculating the GТ-750-6M unit 

thermal scheme for one calendar year of real modes of operation. 

Calculations have showed that area of the work of the HPT FP is close to the 

on-design regime, but LPT works in more wide range of operating modes. 

The problem of flow path geometrical parameter multi-mode optimization 

with consideration of the thermal scheme of the unit is difficult and extremely 

labor-intensive. At present, in the available literature, recommendations and 

examples of the solution of optimization problems in similar papers are 

practically not existent. Considering the above, for the purpose of the 

development of approaches to finding solutions to specified problems, 

preliminary research directed at the consideration of the influence of the 

efficiency of high and low pressure flow paths of GT-750-6M on its integral 
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characteristics (fuel consumption, GTU efficiency, cycle initial parameters, etc.) 

have been carried out. 

The increase of the efficiency of gas turbines flow paths is one of the 

preferable methods of increasing GTU efficiency and useful power. However, 

as studies have shown, in some cases the increase of the efficiency of gas 

turbine separately used in the thermal scheme within modernization does not 

produce the expected effect. It is connected with features of the configuration of 

turbines within GTU, and also with the interaction of turbines with other 

elements of the thermal scheme. The influence of gas turbines flow paths 

efficiency on GTU performance parameters using a GT-750-6M unit (Fig. 7.8) 

is considered as an example. 

Increasing the efficiency of HPT 

As can be seen from Fig. 7.8, HPT is located on the same shaft as the axial 

compressor and provides its work. The mass flow rate, temperature and pressure 

of combustion products behind HPT must be in strict conformity with the 

values necessary for generation by LPT power, set by the external consumer 

(the natural gas blower) in the current operation mode. An increase of HPT 

efficiency in the specified operating conditions of the turbine does not lead to 

the predicted improvement of the performance parameters of the turbine unit. 

For example, when saving the unit operation mode (useful power, the power 

turbine rotor speed and the air parameters), the increase of HPT efficiency leads 

to an increase of its power. The additional power of HPT is transmitted through 

the shaft to the axial compressor, which leads to the redistribution of the main 

parameters of the gas-turbine cycle, namely: 

 the increase of power for compressor drive causes an increase in 

compressor rotor speed, which causes an increase of the air flow rate and 

a slight increase of the compression ratio (compressor efficiency decreases 

http://www.lingvo.ua/ru/Search/GlossaryItemExtraInfo?text=выработка&translation=generation&srcLang=ru&destLang=en
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because of the displacement of the compressor and HPT joint operation 

line takes place); 

 the new air flow rate and pressure at the compressor outlet are superfluous 

for this thermal cycle and cause a fall in combustion products at the 

combustion chamber outlet, which inevitably leads to a decrease in cycle 

thermodynamic efficiency. 

The specified changes in the unit’s thermal scheme nullify the effect expected 

from HPT flow path optimization. 

Increasing the efficiency of LPT 

The calculations show that the increase of LPT efficiency has a favorable 

effect on the performance parameters of the GT-750-6M and allows getting 

increase the net power while maintaining fuel consumption or fuel economy 

while maintaining power, given to the external consumer. Considerable 

deviations of the gas-turbine cycle parameters from design are not observed in 

this case. 

Thus, an increase in the efficiency of LPT flow path is the most rational 

variant of the GT-750-6M unit modernization. The specified modernization 

does not lead to an essential redistribution of the parameters of the gas-turbine 

cycle and therefore does not touch the expensive elements of the unit such as 

the compressor, combustor, regenerator and supercharger. 

It is worth to note that these studies were carried out for the GT-750-6M unit 

but research results and conclusions are valid for all GTUs with a similar 

thermal scheme. 

For the optimization of geometrical parameters of GT-750-6M LPT flow path, 

taking into account the actual modes of operation, three upper levels of 

developed recursive algorithm optimization, described in Chapter 1, were 



◆◇     Chapter 7 Experience and Examples of Optimization of Axial Turbines Flow Paths     ◇◆ 
 

http://www.sciencepublishinggroup.com 263 

involved. The distribution of the tasks and interaction between the local design 

levels are depicted in Fig. 7.9. 

The highest level in the hierarchy of the design process "Scheme" is intended 

to calculate the distributions of parameters of GTU cycle (pressure, temperature, 

capacity, and cost) between elements in the scheme, as well as to determine the 

integral indicators of the unit at the off-design operation modes. As can be seen 

from Fig. 7.9, from the level "Scheme" to the level "Cylinder" the sets of mode 

parameters come that uniquely identify modes of the FP operation 

(consumption of combustion products at the entrance to the FP – 0G , full gas 

pressure at the inlet of FP – 
*

0P , full gas temperature at the inlet to FP – 
*

0T , full 

gas pressure at the outlet of the FP – 
*

2P , turbine shaft speed – n). 

 

Figure 7.9  The structure of optimal design technique. 
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At the "Cylinder" level optimal values of basic geometrical parameters such 

as mean diameters of the nozzle and blade wheel cascades (
1 2,D D ), the heights 

of the nozzles and the blades (
1 2,l l ), inlet/outlet flow angles in both absolute 

and relative motions for nozzle and blades wheel cascades 

( gg 1201 ,,,  ) were defined. 

As a functional limitation at the level of "Cylinder" the flow rate of 

combustion products at the entrance to the LPT was chosen, that should match 

to the flow rate through the initial FP of the unit. For assessing the quality 

criterion in the process of optimization the value equal to the total work of the 

gas turbine (GT) for one year of operation was used. 

At the next level "Stage" the optimal values of the numbers of the nozzle and 

rotor blades (
1 2,z z ) for their cascades were found, and optimized parameters on 

the "Cylinder" level were used as parametric constraints. Quality criterion is the 

internal efficiency of the stage.  

A thermodynamic calculation of the GTU schemes procedure (section 2.5) is 

used as the mathematical model at the "Scheme" level. At the "Cylinder" and 

"Stage" levels a procedure for direct one-dimensional calculation of the axial 

turbines FP (section 2.2.3) is applied. When the optimal solution at the level of 

"Cylinder" was found, using direct one-dimensional model of FP, the universal 

characteristics of well-designed LPT are build. These characteristics are returning 

to the "Scheme" level for calculation of integral characteristics of the GTU. 

Three iterations for refining the optimal solution were conducted during 

computation. The optimization task was solved taking into account 177 real 

operation modes of the GTU. Each mode corresponds to unit operation for      

24 hours. Unit loading for the considered period varied in a range from            

52 to 73% of the on-design mode, equal to 6 MW. 
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The calculations has shown that in the on-design operation mode of the GTU 

the gain of LPT useful capacity, without mass flow rate increase, was 1.5% 

(93.1 kW). Efficiency increase after optimization is caused by a decrease in the 

losses in nozzle and rotor cascades, exit energy losses, and a reduction of 

leakages in radial clearance. Therefore, in the on-design mode the velocity 

coefficient for nozzle and rotor cascades of an optimal flow path increased by 

0.4 and 0.6% respectively, the absolute velocity downstream rotor (
2c ) 

decreased by 22%, and the leakage in radial clearance decreased by 2.7%. There 

was an increase of heat drop for nozzle cascades and a decrease of heat drop for 

rotor cascades (reaction decreased from 0.478 to 0.368). When the optimal 

design of the turbine works within the thermal scheme of the studied unit, the 

reduced value of velocity 2c  leads to a corresponding decrease of total pressure 

losses in the exhaust diffuser. 

The optimum values of variable parameters, obtained through the 

optimization, are shown in the Table 7.6. 

Table 7.6  Results of optimal design of the GT-750-6M high pressure turbine. 

Parameter Initial design Optimal design 

1. Nozzle mean diameter – D1, m 0.970 1.046 

2. Blade wheel mean diameter – D2, m 0.972 1.050 

3. Nozzle blade height – l1, m 0.210 0.203 

4. Working blade height – l2, m 0.211 0.222 

5. Inlet metal angle of nozzle cascade – α0g, deg 90.00 94.54 

6. Inlet metal angle of blade wheel cascade – β1g, deg 47.33 47.93 

7. Outlet effective angle of nozzle cascade – α1, deg 20.67 19.00 

8. Outlet effective angle of blade wheel cascade – β2, deg 25.18 24.12 

9. Number nozzle blades – z1, pcs 48 41 

10. Number rotor blades – z2, pcs 60 70 

As the result of the optimization the efficiency increment depending on the 

operation mode of GTU is from 0.09 to 0.27%. The fuel economy (of natural 

gas) for GTU with optimal LPT flow path depending on operation modes is 
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given in Fig. 7.10. The total fuel economy for the considered period of 177 days 

amounted to 50831 kg. 

 

 

Figure 7.10  Fuel economy for the GT-750-6М with optimal LPT by operation modes. 

Before performing the work of such complexity, as the above examples of 

optimal design of multi-stage cylinders, the authors made a huge amount of the 

work related to the verification of the developed and implemented mathematical 

models as well as proposed methods of optimization. 

It should be emphasized that the criteria of the calculation results is an 

experiment. Full-scale experimental investigation of powerful turbines is very 

expensive. However, at one of the thermal power plants the test of turbine      

200 MW capacity was conducted in a wide range of operational modes. 

Comparison of results of the calculation research of the HPC FP turbines 

with experimental data obtained as a result of field tests of the same turbine in a 

wide range of operating modes, have strongly affirmed that used in optimization 

designed and implemented mathematical models have high accuracy and 
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adequately simulate physical processes of flow of the working fluid in axial 

turbine flow path. 

According to the results of the conducted studies one important conclusion 

can be formulated. 

The further improvement of the indicators level of the quality of existing and 

newly designed advanced multi-stage axial turbine installations is possible only 

using the most modern methods and software systems, capable of solving tasks 

of a multilevel object-oriented multi-criterion and multi-parameter optimization 

of the flow paths of axial turbines, taking into account their operational mode. 
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