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4.1  Introduction 

Medically cancer is a malignance, a broad cluster of assorted disease. The 

malignancy may spread to more expelled parts of the body through the lymphatic 

structure or circulatory framework. While trying to battle uncontrolled 

development cells, researchers are making an endeavor to seek out molecules to 

arrest formation of the malignant tumors. These molecules are referred to as 

anticancer antibiotics. Chemotherapy is typically the primary selection for the 

treatment of the many cancer sorts. Enediynes antibiotics potential natural toxins 

that possess potent medicinal drug, malignant tumor activities due to their 

distinctive molecular structure mode of action, currently the foremost promising 

leaders within the malignant tumor medical aid and tried clinical affectivity [1]. 

Among 20 distinct enediynes, the foremost necessary Neocarzinostatin (NCS) in 

cancer treatment and a potent tumour, drug actions [2] and exerted by DNA 

cleavage. DNA harming movement essentially in single-strand DNA cuts related 

yield through an O2subordinate reaction [3], Thiols [4] and UV radiation [5] 

enormously upgrade DNA-severing properties of NCS. This Chapter offers a high 

level read of NCS, synthesis, mode of action and efforts undertaken to vogue 

artificial enediyne-related DNA cleaving agents. 

4.2  Neocarzinostatin Chromophore 

NCS is the first member of enediyne antibiotic class [6], isolated from 

Streptomycescarzinostaticus Var. F-41reported by Ishida et al in 1965 [7]. In 

1966, the complementary chromophore binding protein (apo-NCS) isolated [8] 

and following Maeda„s studies primary sequence of protein was published [9], 

later revised [10] and confirmed by NMR studies [11]. NCS is an acidic protein, 

MW 10,700, 1:1 non-covalently associated mixture of a protein component 

(NCS apoprotein) and a chromophoric molecule (NCS chromophore, Figure 1). 
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It is the in freestanding state is highly unstable upon exposure to heat, high pH 

or UV-light irradiation. 

 

Figure 1. Neocarzinostatin chromophore (peptide loop composed of 113 amino acids). 

4.3  Enediyne Core of NCS Biosynthesis 

14 genes identified withinncs gene (ncsEtoncsE11andncsF1toncsF2) cluster, 

important role in the NCS core biosynthesis [12]. The enediyne core previously 

predicted to be synthesized by an iterative type Ipolyketide synthase (PKS) with 

five domains, of which keto-synthase (KS), acyltransferase (AT), ketoreductase 

(KR), and dehydratase (DH) are characteristic of known type I PKSs [13, 14, 15, 

16, 17]. NcsE shows head-to-tail sequence homology to the SgcE [13] and CalE8 

[14] enediyne PKSs. Consequently, it proposed that NcsE, in a mechanistic 

analogy to other enediyne PKSs, catalyzes the formation of the nascent linear 

polyunsaturated intermediate from one acetyl CoA and seven malonyl CoAs in an 

iterative manner, which processed to form the enediyne core by several gene 

products, including NcsE1-E11 and epoxide hydrolases F1 and F2 (Scheme 1). 
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Scheme 1. Biosynthetic hypothesis of the enediyne core of NCS. 

4.4  Naphthoic Acid Biosynthesis 

Naphthoic acid moiety synthesis from polyketidechain of sixhead-to-tail 

acetate units are disclosed by isotopic labeling experiments. In NCS gene cluster, 

major enzymesare (a) an iterative PKS (NcsB), (b) a CoA ligase and (c) several 

ancillary enzymes. Naphthoic acid synthesis starts with NcsB, an iterative PKS 

that contain domains (a) the keto-acyl synthase (KS), (b) acyltransferase (AT),   

(c) keto-reductase (KR), (d) dehydratase and (e) acyl carrier protein domain (ACP) 

and a core domain with unknown function. NcsB uses acetyl coenzyme A (CoA) 

as stating material and malonyl-CoA as extender to assemble a nascent 

hexaketide with reduction and dehydration of the keto groups at C5 and C9 

(Scheme 2).  

 

Scheme 2. Possible biosynthesis mechanism for the naphthoic acid moiety of 

neocarzinostatin. 
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The hexaketide intermediate then undergoes aromatization by intramolecular 

aldol condensation to furnish the naphthoic acid moiety. The post-PKS 

modification of the naphthoic acid starts with the incorporation of a OH group 

at C8 carbon which catalyzed by the cytochrome P450 hydroxylase NcsB3. 

Ultimatelymethylation of OH group catalyzed by an S-adenosylmethionine 

(SAM) dependent O-methyltransferase(NcsB1). Then NcsB2 ligase catalyzes 

the adenylation of 2-hydroxy-7-methoxy-5-methyl-1-naphthoic acid to form its 

CoA derivative. Finally, putative acyl transferase (NcsB4) responsible for 

transfer of naphthoic group onto enediyne core. 

4.5  Deoxyamino Sugar Biosynthesis 

The deoxy amino sugar moiety biosynthesis start with activation of 

monosaccharide as its nucleotide diphospho (NDP) derivative by 

nucleotidyltransferase NcsC (Scheme 3). Several gene products have been 

proposed for the activation of sugar ring via formation of a 4-keto intermediate, 

deoxygenation at C6 and installation of amino group at C2. The isotopic 

labeling experiments with [methyl-3H] methionine revealed that the N-methyl 

of deoxy amino sugar originates from methionine of SAM. The methylation 

catalyzed by methyltransferase NcsC5, whereas glycosyltransferase NcsC6 may 

transfer sugar moiety onto enediyne core. 

 



Heterocyclic Compounds and Biological Applications 

 

http://www.sciencepublishinggroup.com 105 

 

Scheme 3. Possible mechanism of biosynthetic hypothesis of deoxyaminosugar moiety. 

4.6  Biosynthesis of NCS by Joining Together Peripheral 

Moieties to Enediyne Core 

A convergent strategy could be envisaged for the assembly of the NCS 

chromophore from three individual building blocks of deoxy amino sugar, 

naphthoic acid, and enediyne core (Scheme 4). The coupling between 

dNDP-sugar and enediyne core catalyzed by NcsC6 glycosyltransferase while 

the other coupling between naphthoyl-S-NcsB and enediyne core catalyzed by 

NcsB2 CoA ligase. Although the cyclic carbonyl carbon of NCS previously 

shown to originate from carbonate, no obvious candidate catalyzing the 

attachment of carbonate could be identified within the gene cluster.  

 

Scheme 4. Biosynthesis of enediyne core of NCS with peripheral moieties. 
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4.7  Mechanism of Action of NCSon Cancer Cell 

High-resolution X-ray diffraction, NMR techniques, together with 

thermodynamic studies and molecular modeling disclosed basic principles in 

DNA-drug interaction [18-20] and NCS-DNA mechanism first reported in 1987 

[21]. In pathway A (Schemes 5 & 6), DNA damage initiated by stereospecific 

nucleophilic attack at C-12. This triggering reaction accompanied by 

rearrangement of ring skeleton with epoxide opening and formation of cumulene 

observed by NMR at low temperature [22] in 5 as shown in Scheme 6. Then this 

reactive intermediate undergoes a rapid cycloaromatization to form diradical in 6, 

and then which proceeds to attack DNA by removing hydrogen atoms in 7 and 

this scenario provided by using HSCH2CO2Me [21-24], NaBH4 [24] as 

nucleophiles in in vitro experiments. The methyl thioglycolate isolated, fully 

characterized and the evidence of the basic methyl amino side chain on the sugar 

residue assists the thiol addition at C-12 through base catalysis provided by Myers 

[22, 25]. The additional information provided by three-dimensional structure of 

intact NCS [26] - the amino methyl group of sugar forced into close proximity to 

C-12(4.3Å) due to a salt bridge with Asp33, suggesting that nucleophilic attack at 

C-12 assisted by nitrogen, and together with additional steric hindrance at C-12 

from the side chains of Ser98, Asp33, Phe52 and the positioning of epoxide in a 

hydrophobic pocket away from an acid catalyst, this indicates that how apoprotein 

serves to stabilize the chromophore. In pathway B cycloaromatization, NCS 

chromophore incubated with 2-mercaptoethanol in the presence of apoprotein in 

which the zwitterionic intermediate 9 (Scheme 6) is indicated [27, 28], although 

this mechanism probably does not operate for the free chromophore. Since it is 

thought that dissociation of NCS chromophore from apoprotein and subsequent 

DNA binding precedes activation of chromophore, the biological relevance of this 

second mechanism seems dubious, and this pathway is not responsible for DNA 

cleavage reported by Chin and Goldberg in 1993 [29]. 
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Scheme 5. General mechanism of action of enediyne anticancer  

antibiotics: DNA cleavage. 

 

Scheme 6. Mechanism of action of enediyne anticancer antibiotics: DNA cleavage 

initiated by C4'- or C5'-hydrogen atom abstraction. 
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Scheme 7. Mechanism of action of enediyne anticancer antibiotics: DNA cleavage 

initiated by (a) C4' or (b) C5' hydrogen atom abstraction. 

 

Scheme 8. Mechanism of action of enediyne anticancer antibiotics: DNA cleavage 

initiated by C1'- hydrogen atom abstraction. 
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Several scientists worked out to disclose the details of DNA damage by NCS 

chromophore diradical 6. Itdemonstrated that at least 80% of DNA cleavage 

leads to 5'-aldehyde of A and T residues selectively [30]. These cleaves 

involves hydrogen atom abstraction from C-5' of deoxyribose and reaction with 

molecular oxygen as showed in scheme 7. Less than 20% of strand breaks result 

from hydrogen atom abstraction at C-4'[31-35] and C-1' [32] (Schemes 7 & 8). 

The radical at C-2 of 6 particularly susceptible to both internal and external 

quenching up to 70% under physiological conditions reported by Goldberg [36]. 

A convincing explanation that the NCS chromophore effects primarily 

single-stranded DNA cuts by C-6 radical at C-5' of deoxyribose, whereas those 

double stranded lesions are involved hydrogen abstraction by C-2 radical from 

C-1' or C-4' of deoxyribose on complementary strand. Further insight into the 

interaction of NCS chromophore with DNA, recent observation made clear that 

a thiol independent cleavage mode is possible with single-stranded DNA bulges, 

the regions where double-stranded structuresgenerated intra molecularly [37]. 

These logical consequences indicated that DNA is an active participant in its 

own destruction, since DNAs containing point mutations which disrupt the 

bulge are not cleavage substrates. 

4.8  Conclusion and Future Prospects 

The studies described above indicate that how the mechanistic and synthetic 

challenges resulting from discovery of the neocarzinostatin antibiotic have been 

approached. Designed enediynes demonstrated abilities to cleave DNA and 

exhibited selective cytotoxicity against tumor cells versus normal cells [38, 39]. 

Enediynes have been implicated in the puzzling but important phenomenon of 

programmed cell death (apoptosis) [40] and the total synthesis of prominent and 

complex member of enediyne class has been achieved [41]. The most studied 

systems relate to neocarzinostatin, perhaps because this available for longest 
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period of time. This compound shown to possess antitumor activity in patients 

with liver cancer, bladder cancer, stomach cancer, and leukemia as well as in 

various animal tumors [42]. Polystyrene-co-maleic acid-NCS shown high 

antitumor activity in animal models following oral administration [43, 44]. 

Immuno-conjugates of neocarzinostatin such as A7-NCS [45] showing 

increased survival times when administered to postoperative cancer patients 

(both with and without metastases) when compared with other chemotherapies. 

Therefore these novel natural products with their unprecedented modes of 

action are clearly more than a scientific curiosity, and it remains to be seen 

whether enediynes, either natural or designed, will become useful additions to 

the arsenal of chemotherapies available to clinicians for the treatment of cancer. 

The next phase of research in enediyne field will undoubtedly include further 

synthetic attempts at naturally occurring targets, new designed enediynes with 

sophisticated mechanisms of in vitro and in vivo activation, and attachment of 

these systems to suitable delivery systems. Targeting devices may include 

antibodies, oligonucleotides, oligosaccharides, peptides and proteins, DNA 

intercalators, DNA groove binders, hormones, and other ligands. Hybrid 

molecules between enediyne “molecular warheads” and such delivery systems 

should provide new insights into biological phenomena and may facilitate drug 

design and development. 
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