Nasal-type NK/T-cell lymphoma (nasal-type NKTL) is one of the most lethal cancers for. Our study aimed to identify hub differentially expressed genes (DE- genes) and their upstream microRNAs between nasal-type NK/T-cell lymphoma (NKTL) tumor samples and normal nasal tissues through integrated bioinformatics. The 503 DE-genes and 106 DE-miRNAs were identified between NKTL and human normal nasal samples. GO and KEGG analysis were significantly enriched in meiotic recombination, regulation of syncytium formation by plasma membrane fusion, deubiquitination, enriched in meiotic recombination, regulation of syncytium formation by plasma membrane fusion, and stem cell division. And 11 differential expression hub genes and their upstream microRNAs were identified between nasal-type NKTL and normal nasal samples. In summary, after a series of analyses, we found that 11 hub DE-genes and their upstream DE-miRNAs (CDC27- miR-548c-3p, FREM2- miR-373*, ARHGAP29-miR-548c-3p, QSER1-miR-548c-3p, CD3EAP-miR-149*, SF3A1- miR-548c-3p, AQP4-miR-29b, ZFP36L2-miR-142-3p, SRP72-miR-16, TSC22D2-miR-16, TSC22D2-let-7f, DOCK5-miR-16) between nasal-type NKTL and normal nasal samples. They are highly likely to be serve as promising biomarkers in nasal-type NKTL.
Published in | Cancer Research Journal (Volume 8, Issue 4) |
DOI | 10.11648/j.crj.20200804.13 |
Page(s) | 68-81 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
Bioinformatics Analysis, Differentially Expressed Genes (DE-genes), Differentially Expressed microRNAs (DE-miRNAs), Nasal-type NK/T-cell Lymphoma (nasal-type NKTL), microRNAs
[1] | P. B. Allen, Mary Jo Lechowicz, Management of NK/T-Cell Lymphoma, Nasal Type, Journal of Oncology Practice 15 (10) (2019) 513-520. |
[2] | S. V. Adams, P. A. Newcomb, A. R. Shustov, Racial patterns of peripheral T-cell lymphoma incidence and survival in the united states, Journal of clinical oncology 34 (9) (2016) 963-971. |
[3] | M. Yamaguchi, R. Suzuki, M. Oguchi, Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type, Blood 131 (23) (2018) 2528-2540. |
[4] | N. Somasundaram, J. Q. Lim, C. K. Ong, S. T. Lim, Pathogenesis and biomarkers of natural killer T cell lymphoma (NKTL), J Hematol Oncol 12 (1) (2019) 28. |
[5] | A. C. Mallory, H. Vaucheret, MicroRNAs: something important between the genes, Current Opinion in Plant Biology 7 (2) (2004) 120-125. |
[6] | S. P. Kabekkodu, V. Shukla, V. K. Varghese, J. D. Souza, S. Chakrabarty, K. Satyamoorthy, Clustered miRNAs and their role in biological functions and diseases, Biological Reviews Cambridge Philosophical Society 93 (4) (2018) 1955-1986. |
[7] | J. Yan, B. Li, B. Lin, P. T. Lee, T.-H. Chung, J. Tan, C. Bi, X. T. Lee, V. Selvarajan, S.-B. Ng, H. Yang, Q. Yu, W.-J. Chng, EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma, Blood 128 (7) (2016) 948-958. |
[8] | S.-B. Ng, J. Yan, G. Huang, V. Selvarajan, J. L.-S. Tay, B. Lin, C. Bi, J. Tan, Y.-L. Kwong, N. Shimizu, K. Aozasa, W.-J. Chng, Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma, Blood 118 (18) (2011) 4919-4929. |
[9] | V. Agarwal, G. W. Bell, J.-W. Nam, D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, Elife 4 (2015) e05005. |
[10] | S.-D. Hsu, F.-M. Lin, W.-Y. Wu, C. Liang, W.-C. Huang, W.-L. Chan, W.-T. Tsai, G.-Z. Chen, C.-J. Lee, C.-M. Chiu, C.-H. Chien, M.-C. Wu, C.-Y. Huang, A.-P. Tsou, H.-D. Huang, miRTarBase: a database curates experimentally validated microRNA-target interactions, Nucleic Acids Research 39 (Database issue) (2011) D163-D169. |
[11] | Y. Chen, X. Wang, miRDB: an online database for prediction of functional microRNA targets, Nucleic Acids Research 48 (D1) (2020) D127-D131. |
[12] | Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk, C. Benner, S. K. Chanda, Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nature Communications 10 (1) (2019) 1523. |
[13] | J. Zhang, M. Gurusaran, Y. Fujiwara, K. Zhang, M. Echbarthi, E. Vorontsov, R. Guo, D. F. Pendlebury, I. Alam, G. Livera, M. Emmanuelle, P. J. Wang, J. Nandakumar, O. R. Davies, H. Shibuya, The BRCA2-MEILB2-BRME1 complex governs meiotic recombination and impairs the mitotic BRCA2-RAD51 function in cancer cells, Nature Communications 11 (1) (2020) 2055. |
[14] | S. de Mel, S. S. Hue, A. D. Jeyasekharan, W. J. Chng, S. B. Ng, Molecular pathogenic pathways in extranodal NK/T cell lymphoma, J Hematol Oncol 12 (1) (2019) 33. |
[15] | S. Zhang, J. Yuan, R. Zheng, Suppression of ubiquitin-specific peptidase 17 (USP17) inhibits tumorigenesis and invasion in non-small cell lung cancer cells, Oncology Research 24 (4) (2016) 263-269. |
[16] | Y. Song, W. Song, Zhaoming, W. Song, Y. Wen, J. Li, Q. Xia, M. Zhang, CDC27 promotes tumor progression and affects PD-L1 expression in T-Cell lymphoblastic lymphoma, Frontiers in Oncology 10 (2020) 488. |
[17] | X. Zhao, Y. Lei, G. Li, Y. Cheng, H. Yang, L. Xie, H. Long, R. Jiang, Integrative analysis of cancer driver genes in prostate adenocarcinoma, Molecular Medicine Reports 19 (4) (2019) 2707-2715. |
[18] | M. Vidak, I. Jovcevska, N. Samec, A. Zottel, M. Liovic, D. Rozman, S. Dzeroski, P. Juvan, R. Komel, Meta-analysis and experimental validation identified FREM2 and SPRY1 as new glioblastoma marker candidates, International Journal of Molecular Sciences 19 (5) (2018) 1369. |
[19] | T. Tanaka, M. Arai, S. Wu, T. Kanda, H. Miyauchi, F. Imazeki, H. Matsubara, O. Yokosuka, Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer, Oncology Reports 26 (5) (2011) 1329-1335. |
[20] | X. Ju, D. Li, Q. Shi, H. Hou, N. Sun, B. Shen, Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia, Pediatric Hematology and Oncology 26 (1) (2009) 1-10. |
[21] | M. Schraders, P. Jares, S. Bea, E. F. P. M. Schoenmakers, J. H. J. M. v. Krieken, E. Campo, P. J. T. A. Groenen, Integrated genomic and expression profiling in mantle cell lymphoma: identification of gene-dosage regulated candidate genes, British Journal Haematology 143 (2) (2008) 210-221. |
[22] | Y. Wang, J. Huang, Y. Ma, G. Tang, Y. Liu, X. Chen, Z. Zhang, L. Zeng, Y. Wang, Y. B. Ouyang, G. Y. Yang, MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4, J Cereb Blood Flow Metab 35 (12) (2015) 1977-84. |
[23] | L. Diamanti, D. Franciotta, G. Berzero, P. Bini, L. Farina, A. Colombo, M. Ceroni, E. Marchioni, Late post-transplant anti-aquaporin-4 Ab-positive optic neuritis in a patient with AML, Bone Marrow Transplantation 50 (8) (2015) 1125-1126. |
[24] | L. Simone, F. Pisani, M. G. Mola, M. D. Bellis, G. Merla, L. Micale, A. Frigeri, A. L. Vescovi, M. Svelto, G. P. Nicchia, AQP4 aggregation state is a determinant for glioma cell fate, Cancer Research 79 (9) (2019) 2182-2194. |
[25] | R. Garzon, S. Liu, M. Fabbri, Z. Liu, C. E. A. Heaphy, E. Callegari, S. Schwind, J. Pang, J. Yu, N. Muthusamy, V. Havelange, S. Volinia, W. Blum, L. J. Rush, D. Perrotti, M. Andreeff, C. D. Bloomfield, J. C. Byrd, K. Chan, L.-C. Wu, C. M. Croce, G. Marcucci1, MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1, Blood 113 (25) (2009) 6411-6418. |
[26] | R. Kohnken, J. Wen, B. Mundy-Bosse, K. McConnell, A. Keiter, L. Grinshpun, A. Hartlage, M. Yano, B. McNeil, N. Chakravarti, B. William, J. E. Bradner, M. A. Caligiuri, P. Porcu, A. Mishra, Diminished microRNA-29b level is associated with BRD4-mediated activation of oncogenes in cutaneous T-cell lymphoma, Blood 131 (7) (2018) 771–781. |
[27] | L. Mazzoccoli, M. C. Robaina, A. G. Apa, M. Bonamino, L. W. Pinto, E. Queiroga, C. E. Bacchi, C. E. Klumb, MiR-29 silencing modulates the expression of target genes related to proliferation, apoptosis and methylation in Burkitt lymphoma cells, Journal of Cancer Research and Clinical Oncology 144 (3) (2018) 483-497. |
[28] | M. Vidak, I. Jovcevska, N. Samec, A. Zottel, M. Liovic, D. Rozman, S. Dzeroski, P. Juvan, R. Komel, miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelial-mesenchymal transition, Cell Death and Disease 5 (2014) e1335. |
[29] | E. Iwanaga, T. Nanri, H. Mitsuya, N. Asou, Mutation in the RNA binding protein TIS11D/ZFP36L2 is associated with the pathogenesis of acute leukemia, International journal of oncology 38 (1) (2011) 25-31. |
[30] | D. J. Hodson, M. L. Janas, A. Galloway, S. E. Bell, S. Andrews, C. M. Li1, R. Pannell, C. W. Siebel, H. R. MacDonald, K. D. Keersmaecker, A. A. Ferrando, G. Grutz, M. Turner, Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia, Nature immunology 11 (8) (2010) 717-724. |
APA Style
Daxia Cai, Ying Yang, Zewei Jiang, Dongmei He. (2020). Identification of 11 Differentially Expressed Hub Genes and Their Upstream microRNAs in Nasal-type NK/T-cell Lymphoma Based on Clinical Sample Analysis. Cancer Research Journal, 8(4), 68-81. https://doi.org/10.11648/j.crj.20200804.13
ACS Style
Daxia Cai; Ying Yang; Zewei Jiang; Dongmei He. Identification of 11 Differentially Expressed Hub Genes and Their Upstream microRNAs in Nasal-type NK/T-cell Lymphoma Based on Clinical Sample Analysis. Cancer Res. J. 2020, 8(4), 68-81. doi: 10.11648/j.crj.20200804.13
AMA Style
Daxia Cai, Ying Yang, Zewei Jiang, Dongmei He. Identification of 11 Differentially Expressed Hub Genes and Their Upstream microRNAs in Nasal-type NK/T-cell Lymphoma Based on Clinical Sample Analysis. Cancer Res J. 2020;8(4):68-81. doi: 10.11648/j.crj.20200804.13
@article{10.11648/j.crj.20200804.13, author = {Daxia Cai and Ying Yang and Zewei Jiang and Dongmei He}, title = {Identification of 11 Differentially Expressed Hub Genes and Their Upstream microRNAs in Nasal-type NK/T-cell Lymphoma Based on Clinical Sample Analysis}, journal = {Cancer Research Journal}, volume = {8}, number = {4}, pages = {68-81}, doi = {10.11648/j.crj.20200804.13}, url = {https://doi.org/10.11648/j.crj.20200804.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.crj.20200804.13}, abstract = {Nasal-type NK/T-cell lymphoma (nasal-type NKTL) is one of the most lethal cancers for. Our study aimed to identify hub differentially expressed genes (DE- genes) and their upstream microRNAs between nasal-type NK/T-cell lymphoma (NKTL) tumor samples and normal nasal tissues through integrated bioinformatics. The 503 DE-genes and 106 DE-miRNAs were identified between NKTL and human normal nasal samples. GO and KEGG analysis were significantly enriched in meiotic recombination, regulation of syncytium formation by plasma membrane fusion, deubiquitination, enriched in meiotic recombination, regulation of syncytium formation by plasma membrane fusion, and stem cell division. And 11 differential expression hub genes and their upstream microRNAs were identified between nasal-type NKTL and normal nasal samples. In summary, after a series of analyses, we found that 11 hub DE-genes and their upstream DE-miRNAs (CDC27- miR-548c-3p, FREM2- miR-373*, ARHGAP29-miR-548c-3p, QSER1-miR-548c-3p, CD3EAP-miR-149*, SF3A1- miR-548c-3p, AQP4-miR-29b, ZFP36L2-miR-142-3p, SRP72-miR-16, TSC22D2-miR-16, TSC22D2-let-7f, DOCK5-miR-16) between nasal-type NKTL and normal nasal samples. They are highly likely to be serve as promising biomarkers in nasal-type NKTL.}, year = {2020} }
TY - JOUR T1 - Identification of 11 Differentially Expressed Hub Genes and Their Upstream microRNAs in Nasal-type NK/T-cell Lymphoma Based on Clinical Sample Analysis AU - Daxia Cai AU - Ying Yang AU - Zewei Jiang AU - Dongmei He Y1 - 2020/11/23 PY - 2020 N1 - https://doi.org/10.11648/j.crj.20200804.13 DO - 10.11648/j.crj.20200804.13 T2 - Cancer Research Journal JF - Cancer Research Journal JO - Cancer Research Journal SP - 68 EP - 81 PB - Science Publishing Group SN - 2330-8214 UR - https://doi.org/10.11648/j.crj.20200804.13 AB - Nasal-type NK/T-cell lymphoma (nasal-type NKTL) is one of the most lethal cancers for. Our study aimed to identify hub differentially expressed genes (DE- genes) and their upstream microRNAs between nasal-type NK/T-cell lymphoma (NKTL) tumor samples and normal nasal tissues through integrated bioinformatics. The 503 DE-genes and 106 DE-miRNAs were identified between NKTL and human normal nasal samples. GO and KEGG analysis were significantly enriched in meiotic recombination, regulation of syncytium formation by plasma membrane fusion, deubiquitination, enriched in meiotic recombination, regulation of syncytium formation by plasma membrane fusion, and stem cell division. And 11 differential expression hub genes and their upstream microRNAs were identified between nasal-type NKTL and normal nasal samples. In summary, after a series of analyses, we found that 11 hub DE-genes and their upstream DE-miRNAs (CDC27- miR-548c-3p, FREM2- miR-373*, ARHGAP29-miR-548c-3p, QSER1-miR-548c-3p, CD3EAP-miR-149*, SF3A1- miR-548c-3p, AQP4-miR-29b, ZFP36L2-miR-142-3p, SRP72-miR-16, TSC22D2-miR-16, TSC22D2-let-7f, DOCK5-miR-16) between nasal-type NKTL and normal nasal samples. They are highly likely to be serve as promising biomarkers in nasal-type NKTL. VL - 8 IS - 4 ER -