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Section 2.1
Maximum Likelihood Estimation of the Parameters of a

Stochastic Differential System Modeling the Returns of

the Index of Some Classes of Hedge Funds

[Description] We test the ability of a stochastic differential model of
forecasting the returns of a long-short equity hedge fund index and of a
market index, that is of the HFRI-Equity index and of the S&P 500 index
respectively. The model is based on the assumptions that the value of the
variation of the log-return of the hedge fund index (HFRI Equity) is
proportional up to an additive stochastic error to the value of the
variation of the log-return of a market index (S&P 500) and that the
log-return of the market index can be satisfactorily modeled using the
Heston stochastic volatility model. The model is calibrated on observed
data using a method based on filtering and maximum likelihood. The data
analyzed (i.e. HFRI-Equity and S&P 500 indices) go from January 1990
to June 2007, and are monthly data. The values of the HFRI-Equity and
S&P 500 indices forecast by the calibrated models are compared to the
values of the indices observed. The result of the comparison is
satisfactory.

[Paper] Capelli P., Mariani F., Recchioni M.C., Spinelli F., Zirilli F.
(2010). Determining a stable relationship between hedge fund index
HFRI-Equity and S&P 500 behaviour, using filtering and maximum
likelihood, Inverse Problems in Science and Engineering 18, 83-109.

[Website] http://www.econ.univpm.it/recchioni/finance/w8
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2.1.1 Outline of the Presentation

• The “long short equity” hedge funds

• A stochastic volatility model for the index of the “long short equity”
hedge funds based on the Heston stochastic volatility model

• The forecasting and estimation problems

• Integral representation formula for the solution of the filtering
problem

• Integral representation formulae for the forecasted values of the state
variables

• The calibration problem

• Numerical experiments with synthetic and real data

• References

2.1.2 “Long/Short Equity” Hedge Funds

The “hedge funds” are “funds” having a “speculative” management.

The regulation of these funds is elastic and this fact gives to the
manager a large set of choices. The funds are classified on the basis of the
management style and on the market on which they act.

They can be classified in four macro-classes: long/short equity, event
driven, relative value, global macro.

The manager of a LONG/SHORT EQUITY fund pursues the goal of
constructing a stock portfolio whose return (yield) is independent of the
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market behaviour, and depends only on the manager ability in stock
picking.

The manager buys (long position) the stocks that, in his feeling, are
underestimated by the market and sells short (short position) those stocks
that he believes are overestimated.

2.1.3 A Single Factor Model for the Index of “Long/Short Equity”
Hedge Funds

In the work of Pillonel P., Solanet L.: Predictability in hedge fund index
returns and its application in fund of hedge funds style allocation, Master’s
Thesis in Banking and Finance at Universit?de Lausanne, Hautes Etudes
Commerciales (HEC), (2006), the authors show using time series analysis
that the return of the index of the long/short equity hedge funds can be
explained using the log-return of the S&P500 index by a relation of the
type:

zt = a+ bxt−1 + et, t = 1, 2, . . .

• zt is the hedge fund index return at time t

• xt−1 is the S&P500 return at time t− 1

• et is the error term at time t

• a, b are suitable constants.

2.1.4 From a Discrete Time Model to a Continuous Time Model

We propose a reasonable translation in the continuous time setting of the
findings of the time series analysis presented by Pillonel and Solanet 2006
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that is we consider the following continuous time dynamics for xt, zt:

zt = a+ bxt−1 + et, t = 1, 2, . . . (discrete time)

dzt = βdxt + γ dWt, t > 0, (continuous time)

where β and γ are suitable constants and Wt, t > 0, is a standard Wiener
process such that W0 = 0 and dWt is its stochastic differential. Moreover
we assume that the dynamics of xt, t > 0, (the S&P500 index) is described
by the Heston stochastic volatility model (Heston 1993).

The Heston stochastic volatility model for (xt, vt), t > 0, coupled with
the previous equation for dzt is the model for the return of the long/short
equity hedge funds index that we propose.

2.1.5 The Stochastic Model for “Long/Short Equity” Hedge Funds

Let t be a real variable that denotes time, we consider the stochastic
process (xt, vt, zt), t > 0, solution of the system of stochastic differential
equations:

dxt = (µ̂− 1

2
vt)dt+

√
vtdW

1
t , t > 0,

dzt = β(µ̂− 1

2
vt)dt+

√
vt
(
βdW 1

t + γ dW 3
t

)
, t > 0,

dvt = χ(θ − vt)dt+ ε
√
vtdW

2
t , t > 0,

where W 1
t , W

2
t , W 3

t are standard Wiener processes and dW 1
t , dW 2

t , dW 3
t

are their stochastic differentials satisfying:
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< dW 1
t dW

2
t >= ρ1,2dt, < dW 1

t dW
3
t >= ρ1,3dt,

< dW 2
t dW

3
t >= ρ2,3dt, t > 0,

where < · > denotes the expected value of ·, ρ1,2, ρ1,3, ρ2,3 ∈ [−1, 1]

are the correlation coefficients and the quantities µ̂, χ, ε, θ, β, γ, are real

constants. The stochastic differential equations must be equipped with the

initial conditions: x0 = x̃0, z0 = z̃0, v0 = ṽ0.

2.1.6 Forecasting and Estimation Problems

DATA

• the observation times 0 = t0 < t1 < t2 < . . . < tn < +∞;

• the log-return xt of the stock index: x̃i = x(ti), i = 0, 1, 2, . . . , n;

• the log-return zt of the index of the long/short equity hedge funds:

z̃i = z(ti), i = 0, 1, 2, . . . , n;

We want to use the data available to solve the following problems:

1. Filtering Problem: given the values of the model parameters Θ= (µ̂,

χ, ε, θ, β, γ, ρ1,2, ρ1,3, ρ2,3, ṽ0)T find a forecast of the current variance

level (forecasting problem).
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2. Estimation Problem: find an estimate of the vector Θ.

2.1.7 Filtering Problem

Let us assume that the vector Θ and the filtration Ft = { (x̃i, z̃i) | ti

≤ t} are given.

The filtering problem consists in finding the joint probability density

function p(x, z, v, t | Ft,Θ) of xt, zt, vt, t > 0, conditioned to the

observations contained in Ft for t > 0.

The forecasted values x̂t|Θ, ẑt|Θ, v̂t|Θ of (xt, zt, vt), t > 0 can be found

as:

x̂t|Θ=E(xt|Ft,Θ)=

∫ +∞

0

dv

∫ +∞

−∞
dz

∫ +∞

−∞
vdxxp(x,z,v,t|Ft,Θ),t>0,

ẑt|Θ=E(zt|Ft,Θ)=

∫ +∞

0

dv

∫ +∞

−∞
dz

∫ +∞

−∞
dxzp(x,z,v,t|Ft,Θ),t>v0,

v̂t|Θ=E(vt|Ft,Θ)=

∫ +∞

0

dv

∫ +∞

−∞
dz

∫ +∞

−∞
dxvp(x,z,v,t|Ft,Θ),t>0.

2.1.8 Solution of the Filtering Problem

The joint probability density function p(x, z, v, t|Ft,Θ), (x, z, v)

∈ R × R × R+, t > 0, can be obtained starting from the transition

probability density function pf (x, z, v, t, x
′, z′, v′, t′|Θ), t, t′ > 0,
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t − t′ > 0, that is from the fundamental solution of the Fokker Planck

equation associated to the stochastic differential system (1), (2), (3) as

follows: for i = 0, 1, ..., n, (x, z, v) ∈ R×R×R+:

p(x, z, v, t|Fti ,Θ)=

∫ +∞

0

pf (x, z, v, t, x̃i, z̃i, v
′, ti|Θ)fi(v

′; Θ)dv′,

ti < t < ti+1,

where:

f0(v; Θ) = δ(v − ṽ0), v ∈ R+,

and for i = 1, 2, ..., n :

fi(v; Θ) =
p(x̃i, z̃i, v, t

−
i |Fti−1

,Θ)∫ +∞
0

p(x̃i, z̃i, v′, t
−
i |Fti−1

,Θ)dv′
, v ∈ R+.

(see Fatone et al. 2007 and Mariani et al. 2008 for further details)

2.1.9 Integral Representation Formula for the Fundamental Solution

Proceeding as in Lipton, 2001, pag. 605 it is easy to derive the following

representation formula for the fundamental solution pf :
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pf (x, z, v, t, x
′, z′, v′, t′|Θ) =

1

(2π)2

∫ +∞

−∞
dkeιk(x−x′−µ̂τ)

∫ +∞

−∞
dξeιξ(z−z

′−µ̂βτ) ·

{
e
−2

ε2
χθµ(k,ξ)τe

− 2sδ(k,ξ,τ)

ε2 sγ (k,ξ,τ)
v′

M̃(k, ξ, τ)Ã(k, ξ, τ)

(
v

v′

)ν/2

·

e−M̃(k,ξ,τ)vIν

(
2Ã(k, ξ, τ)M̃(k, ξ, τ)

√
v v′

)}
(x, z, v), (x′, z′, v′) ∈ R×R× R+, t, t′ > 0, τ = t− t′ > 0,

where ι denotes the imaginary unit, Iν(z), z ∈ C, is the modified Bessel

function of positive real order ν = 2χθ
ε2
− 1. The other functions appearing

in the representation formula are elementary functions of the variables

(k, ξ) ∈ R×R and τ ∈ R+.

The functions appearing in the formula for pf are: for (k, ξ) ∈ R ×

R, τ ∈ R+,
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µ(k, ξ) = −1

2
{χ+ ι ε[kρ1,2 + ξ(βρ1,2 + γρ2,3)]} ,

ρ(k, ξ)=
1

2

{
4µ(k, ξ)2+ ε2

[
k2 + ξ2(β2 + γ2 + 2ρ1,3βγ)+

2kξ(ρ1,3γ + β)−ι(k + βξ)]}1/2 ,

sγ(k, ξ, τ) = 1− e−2ρ(k,ξ)τ ,

sβ(k, ξ, τ) = ρ(k, ξ)(1 + e−2ρ(k,ξ)τ )− µ(k, ξ)sγ(k, ξ, τ),

sδ(k, ξ, τ) = ρ(k, ξ)(1 + e−2ρ(k,ξ)τ ) + µ(k, ξ)sγ(k, ξ, τ),

M̃(k, ξ, τ) =
2sβ(k, ξ, τ)

ε2sγ(k, ξ, τ)
,

A(k, ξ, τ) =
2ρ(k, ξ)e−ρ(k,ξ)τ

sβ(k, ξ, τ)
.

2.1.10 Integral Representation Formulae for the Forecasted Values

From the knowledge of the joint probability density function p(x,

z, v, t|Ft,Θ), (x, z, v) ∈ R × R × R+, t ≥ 0, we derive the following

formulae that are used to forecast the values of the stock index log-return

and of the hedge fund index log-return xt, zt, t > 0, t 6= ti, i = 1, 2, . . . , n,

respectively and of the stochastic variance vt, t > 0:
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E(xt|Fti ,Θ) = x̃i + µ̂(t− ti) + θ
(1− e−χ(t−ti))

2χ
−

(1− e−χ(t−ti))

2χ

∫ +∞

0

dv v fi(v; Θ),

E(zt|Fti ,Θ) = z̃i + β µ̂(t− ti) + θ
β(1− e−χ(t−ti))

2χ
−

β(1− e−χ(t−ti))

2χ

∫ +∞

0

dv v fi(v; Θ),

E(vt|Fti ,Θ)=θ(1− e−χ(t−ti))+e−χ(t−ti)
∫ +∞

0

dv vfi(v; Θ),

ti ≤ t < ti+1, i = 0, 1, . . . , n .

Note that we have reduced the computation of the forecasted value to

“one-dimensional” integrals.

2.1.11 Forecasted Values of xt, zt, vt

Parameter values µ̂ = 0.026, χ = 5.94, ε = 0.306, θ = 0.01159, ρ1,2 =

−0.576, ρ1,3 = 0, ρ2,3 = 0, ṽ0 = 0.5, β = 1, γ = 0.1, dt = 4/252.5.
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solid line: “true trajectory”

dash-dotted line: “forecasted trajectory”

2.1.12 Estimation Problem

The solution of the estimation problem is the vector Θ = (µ̂, χ, ε, θ, β,

γ, ρ1,2, ρ1,3, ρ2,3,ṽ0)T belonging to the setM = {Θ = (µ̂,χ, ε, θ, β, γ, ρ1,2,

ρ1,3, ρ2,3, ṽ0)T ∈ R10 | χ > 0, ε > 0, θ > 0, β ≥ 0, γ ≥ 0, 2χθ
ε2
≥ 1,

1 ≥ ρ1,2, ρ1,3, ρ2,3 ≥ −1, ṽ0 > 0} that makes most likely the observations

(x̃i, z̃i), at time t = ti, i = 0, 1, 2, . . . , n, that is the vector Θ that solves

the following problem:

max
Θ∈M

F (Θ).

where

F (Θ) =
n−1∑
i=0

log
{∫ +∞

0

p(xi+1, zi+1, v
′, t−i+1|Fti ,Θ)dv′

}
,Θ ∈M.

We call F (Θ) (log-) likelihood function.
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The technique used to solve the previous optimization problem is based

on a variable metric steepest ascent method. Beginning from an initial

guess Θ0, we update at every iteration the current approximation of the

solution with a step in the direction of the gradient of the (log-)likelihood

function computed in a suitable metric (see Fatone et al. 2007).

2.1.13 Numerical Results on Synthetic Data

Let us remember the dynamical system
dxt = (µ̂− 1

2
vt)dt+

√
vtdW 1

t , t > 0,

dzt = β(µ̂− 1
2
vt)dt+

√
vt

(
βdW 1

t + γ dW 3
t

)
, t > 0,

dvt = χ(θ − vt)dt+ ε
√
vtdW 2

t , t > 0.

We choose the following parameters Θ =

(µ̂,χ, ε, θ,β, γ, ρ1,2, ρ1,3, ρ2,3,ṽ0)T

= Θ1 = (0.026, 5.94,0.306,0.01159,1,0.1,-

0.576,0,0,0.5)T and we use six observation ti =

4 i/252.5, i = 0, 1, 2, 3, 4, 5 (see D.S.Bates, The

Review of Financial Studies, 19 (2006), 909-965).

Animation.
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2.1.14 Analysis of a Two Years Time Series

We have generated the data integrating the stochastic differential system

for a two years period using the following parameter vectors in the first

year Θ = (µ̂, χ, ε, θ, β, γ, ρ1,2, ρ1,3, ρ2,3, ṽ0)T = Θ1

= (0.026, 5.94, 0.306, 0.01159, 1, 0.1,−0.576, 0, 0, 0.5)T and in the

second year we have Θ = (µ̂, χ, ε, θ, β, γ, ρ1,2, ρ1,3, ρ2,3, ṽ0)T =

Θ2=(0.4, 2, 0.01, 0.01, 1, 0.01, 0.5, 0, 0, 0.012)T . The series made of 505

observation times corresponding to 1010 observations (x̃i, z̃i),

i = 0, 1, 2, . . . , 504. We solve the optimization problem using a time

window made of 8 consecutive observation times. In particular we divide

the time interval [0, 504
252.5

] in 63 consecutive disjoint time windows

containing 8 consecutive observation times. the results obtained are

summarized in the following figure.

Animation.
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2.1.15 Numerical Results on Real Data (Banca Akros, Milano)

We have 211 observation times corresponding to 211 months from

1/31/1990 to 06/30/2007, that is we have 211 couples (x̃i, z̃i),

i = 0, 1, . . . , 210. We have applied the calibration procedure on a window

of nine consecutive observation times (x̃i, z̃i), i = 0, 1, 2, . . . , 8. We

move this window through the data time series discarding the data

corresponding to the first observation time of the window and inserting

the data corresponding to the next observation time after the window. So

that we solve 203 optimization problems and we obtain the reconstruction

of the parameters shown below.
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2.1.16 Is the Model for the Return of the Index of the Hedge Funds
a Satisfactory Model?

Let us show the reconstruction of the two parameters β, ρ1,3. Remember

that we have assumed zt ≈ βxt hence we expect that β is constant and that

zt and xt are positively correlated.
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2.1.17 Comparison Between Forecasted Values and Data of the
Hedge Fund Index Returns

Mean absolute error on the forecasted values 0.0287

2.1.18 Future Work

• Solve filtering problems that uses the prices of some derivatives on

the indices considered as data to make more accurate the calibration

procedure.

• Derive semi explicit formulae in the limit case of high frequency

data to reduce the computational cost of the solution of the filtering

problem.

• Extend the previous work to other kinds of hedge funds suggesting
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and analyzing adequate models.

Note that several numerical experiments and digital movies relative to

the problem considered here that show the behaviour of the filtering and

estimation method proposed can be found at the website:

http://www.econ.univpm.it/recchioni/finance/w5.

A more general reference to the work in mathematical finance of the

authors and of their coauthors is the website:

http://www.econ.univpm.it/recchioni/finance.
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Section 2.2
Calibration of a Stochastic Model of Spiky Prices: An

Application to Electric Power Prices

[Description] We use filtering and maximum likelihood methods to solve
a calibration problem for a stochastic dynamical system used to model
spiky asset prices. The data used in the calibration problem are the
observations at discrete times of the asset price. The model considered
describes spiky asset prices through a stochastic process that can be
represented as the product of two independent Markov processes: the
spike process and the process that represents the asset prices in absence
of spikes. A Markov chain is used to regulate the transitions between
presence and absence of spikes. Given the calibrated model we develop a
sort of tracking procedure able to forecast the forward asset prices.
Numerical examples using synthetic and real data of the solution of the
calibration problem and of the performance of the tracking procedure are
presented. The real data studied are electric power prices data taken from
the U.K. electricity market. The forward prices forecast with the tracking
procedure and the observed forward prices are compared to evaluate the
quality of the model and of the forecasting procedure.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2012). The
analysis of real data using a stochastic dynamical system able to model
spiky prices, Journal of Mathematical Finance 2, 1-12.

[Website] http://www.econ.univpm.it/recchioni/finance/w10
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2.2.1 The Calibration Problem

We want to estimate the parameters of a stochastic dynamical system
used to model spiky prices starting from observed data.

We use as data the observations at discrete times of asset prices.

The solution of the calibration problem proposed makes use of:

• nonlinear filtering techniques (see Mariani et al. 2008),

• maximum likelihood method (see Fatone et al. 2007, 2012, 2013).

We focus on:

1. The stochastic dynamical system used to model spiky asset prices;

2. The formulation and the solution of the calibration problem for the
spiky asset prices model;

3. The computational efficiency of the solution method of the calibration
problem.

The model considered can be used in realistic situations and the analysis
of time series of real data has been done successfully.

The real data studied are electric power prices data taken from the U.K.

electricity market. These data are “spiky” asset prices.

The numerical results obtained are satisfactory (see Fatone et al. 2012).
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2.2.2 The Model for Spiky Asset Prices

Following Kholodnyi 2004, 2008 we model spiky asset prices as a
non-Markovian stochastic process that can be represented as a
product of two independent Markov processes:

• the spike process: this process is responsible for modeling spikes in
asset prices. It is either equal to the multiplicative amplitude of the
spike during the spike periods or to one during the regular periods,
i.e. the periods between two spikes.

• the process that describes the asset prices in absence of spikes: this
process is responsible for modeling prices in absence of spikes. In
our work this process is a diffusion process.

Finally, the presence or absence of spikes depends on a two-state Markov
process in continuous time that determines whether asset prices are in the
spike state (i.e. during a spike period) on in the regular state (i.e. between
two spike periods).

Let Mt be this two-state Markov process depending on continuous time
t ≥ 0, and let

P (T, t) =

(
Pss(T, t) Psr(T, t)

Prs(T, t) Prr(T, t)

)
, 0 < t ≤ T,

be its 2× 2 transition probability matrix.

1. Pss(T, t) and Prs(T, t) denote the transition probabilities of going
from the spike state at time t respectively to the spike or to the
regular state at time T ;
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2. Psr(T, t) and Prr(T, t) denote the transition probabilities of going
from the regular state at time t respectively to the spike or to the
regular state at time T .

Note that the Chapman-Kolmogorov equation for the two-state Markov
process Mt, t ≥ 0, can be written as follows:

P (T, t) = P (T, τ)P (τ, t), 0 < t ≤ τ ≤ T,

together with the condition that P (T, t) is the 2 × 2 identity matrix when
t = T .

In the important case of a time-homogeneous Markov processMt, t ≥ 0,
the transition probability matrix P (T, t), 0 < t ≤ T is, in fact, a function
of the difference T − t, and it can be written as follows:

P (T, t) =

 b+ae−(T−t)(a+b)

a+b
b−be−(T−t)(a+b)

a+b

a−ae−(T−t)(a+b)

a+b
a+be−(T−t)(a+b)

a+b

 , 0 < t ≤ T, (1)

where the quantities a and b are real non negative parameters able to
control the duration and the frequency of the spike periods (i.e. the
expected lifetime of spikes and the expected time between spikes), that is
a and b satisfy the following conditions:

a ≥ 0, b ≥ 0.

In our model for spiky prices we always assume the two-state Markov
process Mt, t ≥ 0, to be time-homogeneous with the transition probability
matrix P (T, t) given by (1).

Let pr(t), ps(t) and pr(T ), ps(T ) be respectively the probabilities of
being in the regular state and in the spike state at time t and at time T ,

108 http://www.sciencepublishinggroup.com



Chapter 2. The Study of Real Data Using ad hoc Stochastic Models

0 < t ≤ T , we have: ps(T )

pr(T )

 = P (T, t)

 ps(t)

pr(t)

 , 0 < t ≤ T.

We model the process that describes the asset prices in absence of spikes
through a diffusion process defined by the following stochastic differential
equation and initial condition: dŜt = µŜtdt+ σŜtdWt, t > 0,

Ŝ0 = Ŝ∗,
(2)

where

1. Ŝt> 0 denotes the asset prices in absence of spikes at time t ≥ 0,

2. µ is the drift coefficient,

3. σ > 0 is the volatility coefficient,

4. Wt is the standard Wiener process, W0 = 0, and dWt is its stochastic
differential,

5. Ŝ∗ > 0 is a given initial condition.

Equation (2) defines the asset price dynamics of the celebrated Black

Scholes model.

Note that (2) is a Markov process. In Kholodnyi 2004 underlines that
other Markov processes different from (2) can be used to model asset price
dynamics in absence of spikes.

We define the spike process λt, t ≥ 0, that will be responsible for
modeling the amplitude of the spikes in the asset prices as follows:

http://www.sciencepublishinggroup.com 109



Research Seminars in Mathematical Finance: Stochastic Volatility Models, Option Pricing,
Calibration

let ξt, t ≥ 0, be a stochastic process made of independent random
variables with given probability density functions Σ(t, ξ), ξ > 0, t ≥ 0.

We assume that:

1. If the Markov process Mt is in the regular state then the spike process
λt is equal to one, i.e. λt = 1.

2. If the Markov processMt transits into the spike state at time τ then the
spike process λt is equal to a value sampled from the random variable
ξτ during the entire time that the Markov process Mt remains in the
spike state. (We assume that Mt is in the regular state at time t = 0 with
probability one, so that the spike process λt starts with λ0 = 1 with probability
one).

Note that λt, t ≥ 0, is the magnitude of the multiplicative amplitude of

the spikes when the transition to the spike state happens at time t ≥ 0 and

that Σ(t, ξ), t ≥ 0, is the probability density function of λt, t ≥ 0, for the

spike period that begins at time t.

Let us observe that in the special case of spikes with constant amplitude
λ > 1, the probability density function Σ(t, λ′) = Σ(λ′), λ′ > 0, t > 0, is
the Dirac delta function δ(λ− λ′), i.e.:

Σ(λ′) = δ(λ− λ′).

Finally we say that the spike process λt is in the spike state or regular
state if the Markov process Mt is in the spike state or regular state
respectively.

In our model for spiky prices we assume that the spikes have constant
amplitude λ≥ 1.
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2.2.3 The Process for Asset Prices with Spikes

Let us denote with St> 0 the price (eventually) with spikes of the asset
at time t ≥ 0.

Let us assume that the spike process λt and the process Ŝt for asset prices
in absence of spikes are independent.

We define the process St > 0, t ≥ 0, that describes the spiky asset prices,
as the product of the spike process λt and of the process Ŝt for asset prices
in absence of spikes, that is:

St = λtŜt, t > 0.

Note that the process St > 0, t ≥ 0, for spiky asset prices is in the
spike state or in the regular state depending from the fact that the spike
process λt, t ≥ 0, is in the spike state or in the regular state respectively, or
equivalently, depending from the fact that the Markov process Mt, t ≥ 0,
is in the spike state or in the regular state respectively.

Remarks

1. It can be shown (see Kholodnyi 2004, 2008) that, although the process
St, t > 0, is non-Markovian, it can be represented as a Markov process
that for any time t > 0 can be fully characterized by the values of the
processes λt and Ŝt at time t > 0.

2. Kholodnyi 2004 shows that the process St, t > 0, can mimic spikes in
asset prices, that is St, t > 0, can exhibit sharp upward price
movements shortly followed by equally sharp downward price
movements of approximately the same magnitude, so that a spike can
form.
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In particular, since the expected times t̄s and t̄r spent by the process

St, t > 0, in the spike state and in the regular (i.e. inter-spike) state,

respectively, coincide with those associated to the asymptotic

probabilities of the Markov process Mt, it can be shown that if Mt is

time-homogeneous, we have:

t̄s =
1

a
, t̄r =

1

b
. (3)

3. If t̄s is small in comparison with the characteristic time of change of the

process Ŝt, t > 0, then we can say that the process St, t > 0, describes

asset prices with spikes. For example, if Ŝt, t > 0, is the diffusion

process of the Black Scholes model then the previous condition can be

stated as follows:

σ2t̄s =
σ2

a
� 1 and µt̄s =

µ

a
� 1.

That is we can interpret t̄s as the expected lifetime of a spike, and t̄r as

the expected time between two consecutive spikes. In this way the

parameters a and b control the duration and the frequency of the spikes.

For example, equations (3) suggest that to model

short-lived spikes the parameter a must be chosen to be relatively large,

while to model rare spikes the para-meter b must be chosen to be

relatively small .

4. The asymptotic probabilities of the time-homogeneous Markov process
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Mt, t ≥ 0, of being in the spike and in the regular states are given

respectively, by:

ps(∞) = πs =
b

a+ b
, quad pr(∞) = πr =

a

a+ b
.

5. In the special case of short-lived spikes with constant amplitude, the

expected lifetime of a spike t̄s is relatively short with respect to the

expected time between spikes t̄r, that is:

t̄s � t̄r, i.e. a� b.

If we define the characteristic lifetime of a spike tch as tch =
t̄s
t̄r

=
b

a
,

then the asymptotic probabilities πs and πr can be represented as

follows:

πs = tch + o(tch), πr = 1− tch + o(tch),when tch → 0,

where o(tch) stands for a term of the order higher than tch when tch → 0.

The parameters that must be estimated from the data in the calibration
problem are:

• the Black-Scholes model parameters: µ, σ,

• the spiky asset prices model parameters: a, b, λ,

that is, the following vector:

Θ = (µ, σ, a, b, λ)T ,

where T denotes the transpose operator.
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The vector Θ is the unknown of the calibration problem.

The following set of constraints must be satisfied by the vectors Θ that
describe admissible sets of parameters:

M={Θ=(µ, σ, a, b, λ)T ∈R5|σ ≥ 0, a ≥ 0, b ≥ 0, λ ≥ 1}.

2.2.4 The Calibration Problem (More)

DATA

• the observation times 0= t0<t1<t2<. . .<tn<+∞;

• the spiky asset prices Si observed at time ti,i=0,1,2,. . .,n.

We want to use these data to solve the following problems:

• Calibration Problem: find an estimate of the vector Θ = (µ, σ,

a, b, λ)T .

• Filtering Problem (Forecasting Problem): given the values of the
model parameters Θ = (µ, σ, a, b, λ)T forecast the forward prices.

Note that with forward prices we mean prices “in the future”, that is

future prices associated to the spot prices Si, observed at time ti

i = 0, 1, . . . , n. The meaning of future at time ti is simply t > ti. Let us

observe that for each spot price we can forecast a series of forward prices

associated to it.

That is the calibration problem consists in estimating the vector Θ from

the data given by the observations at time t = ti of the asset prices
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containing spikes Si = λtiŜi, for i = 0, 1, . . . , n, i.e. consists in

estimating the value of the vector Θ that makes most likely the available

observations Ft = {Si = λtiŜi : ti ≤ t}, t > 0.

As a byproduct of the solution of this calibration problem we obtain a
technique to track the forward prices.

Remark

For simplicity we assume that the transitions from regular state to spike
state or viceversa happen in the observation times.

2.2.5 Solution of the Calibration Problem

Let

1. p(Ŝ, t|Ft,Θ) be the probability density function of the stochastic

process Ŝt at time t > 0 conditioned to the observations Ft;

2. pi(Ŝ, t|Θ) = p(Ŝ, t|Fti ,Θ) be the probability density function of the

stochastic process Ŝt conditioned to the observations made up to time

t = ti, ti < t ≤ ti+1, i = 0, 1, . . . , n where we define tn+1 = +∞.

In order to measure the likelihood of the vector Θ we introduce a
(log-)likelihood function:

F (Θ)=
n−1∑
i=0

log pi(Ŝi+1, ti+1|Θ), Θ ∈M.
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The solution of the calibration problem is given by the vector Θ that
solves the following optimization problem:

max
Θ∈M

F (Θ). (4)

This problem is called maximum likelihood problem and is an
optimization problem with nonlinear objective function and linear
inequality constraints.

In order to solve problem (4), we must evaluate the (log-) likeli-hood
function F (Θ), i.e. we must evaluate the probability density functions:

pi(Ŝ, t|Θ), Ŝ ≥ 0, ti < t ≤ ti+1,Θ ∈M, fori = 0, 1, ..., n.

The probability density functions pi, i = 0, 1, ..., n−1, are solutions of the

following Fokker-Planck equation associated to the Black-Scholes model:
for i = 0, 1, ..., n− 1,


∂pi
∂t

= −1

2
σ2Ŝ2∂

2pi

∂Ŝ2
− rŜ ∂pi

∂Ŝ
+ rpi, Ŝ≥ 0, ti < t ≤ ti+1,

pi(Ŝ, ti|Θ) = fi(Ŝ; Θ), Ŝ ≥ 0,

(5)

where

f0(Ŝ; Θ) = δ(Ŝ − Ŝ∗),

fi(Ŝ; Θ)=

[
pr(ti)δ(Ŝ−Si)+ps(ti)δ

(
Ŝ−Si

λ

)]
pi−1(Ŝ,ti|Θ)

pr(ti)pi−1(Si, ti|Θ) + ps(ti)pi−1

(
Si
λ
, ti|Θ

) ,

i = 1, 2, ..., n,

(6)
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where pr(ti) and ps(ti) are respectively the probabilities of the
time-homogeneous Markov process Mt, t ≥ 0, of being in the regular and
in the spike state at time t = ti.

Remark

The conditioned probability density functions pi, i = 0, 1, ..., n − 1,

solutions of the initial value problems (5), (6) for the Fokker-Planck
equation, can be written as an integral with respect to the state variable of
the product of the fundamental solution of the Fokker-Planck equation
associated to the Black- Scholes model with the initial conditions (6).

2.2.6 The Filtering Problem

Let us assume that the vector Θ and Ft = {Si = λŜi : ti ≤ t}, t > 0 are
given.

From the knowledge of the values of the model parameters
Θ = (µ, σ, a, b, λ)T we can forecast the power forward prices as follows:

E(SForwτi
)=E(λτi)E(Ŝτi)=(1 · pr(τi) + λ · ps(τi))E(Ŝti)e

µ(τi−ti),

τi = ti + ∆t.

where E(·) denotes the mean value of ·.

Note that we use the following approximation: E(Ŝti) =
1

10

9∑
k=0

Ŝi−k since the average in time of the observations gives a better
approximation of the “spatial” average than the single measure Ŝi.
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The optimization algorithm used to solve the maximum likelihood
problem.

The technique used to solve the maximum likelihood problem is based
on a variable metric steepest ascent method.

Beginning from an initial guess Θ0, we update at every iteration the
current approximation of the solution of the optimization problem with a
step in the direction of the gradient of the (log-)likelihood function
computed in a suitable variable metric to take care of the constraints.

Note that the initial guess Θ0 ∈M is built with some elementary ad hoc
steps.

Let us fix a tolerance value δ > 0 and a maximum number of iterations
iter > 0, we denote with Θ∗ the (numerically computed) maximizer of the
(log-)likelihood function.

1. Set k = 0 and initialize Θ = Θ̃0;

2. Evaluate F (Θk), if k > 0 and if |F (Θk)− F (Θk−1)| < δ, where | · |

denotes the absolute value of ·, go to item 7;

3. Evaluate the gradient of the (log-)likelihood function: ∇F (Θk) =(
∂F
∂µ
, ∂F
∂σ
, ∂F
∂a
, ∂F
∂b
, ∂F
∂λ

)T
(Θk), if ‖∇F (Θk)‖ < δ where || · || denotes

the Euclidean norm of the vector ·, go to item 7;

4. Perform the steepest ascent step, evaluating Θk+1 = Θk+ηk∇F (Θk),

where ηk is a positive real number representing the length of the step

done in the direction of ∇F (Θk). The choice of ηk involves the use

of “variable metrics”;
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5. If ||Θk+1 −Θk|| < δ, go to item 7;

6. Set k = k + 1, if k < iter go to item 2;

7. Set Θ∗ = Θk and stop.

2.2.7 Some Numerical Results on Real Data

The real spiky data studied are electric power prices data taken from

the U.K. electricity market. These data are “spiky” asset prices.

DATA

• the observation times 0 = t0 < t1 < t2 < . . . < tn = 1395 < +∞
(days)(more than 5 years of daily observations: from 01/05/2004 to
07/10/2009);

• the spiky asset prices Si at time ti, where Si=spot daily electric power
price (GBP/MWh), namely Day-Ahead price, i = 0, 1, 2, . . . , n.

For each spot price there is a series of forward prices associated to it for
a variety of delivery periods. These include:

• forward price 1 month deep in the future (Month-Ahead price);

• forward price 3 months deep in the future (Quarther-Ahead price);

• forward price 4 months deep in the future (Season-Ahead price);

• forward price 1 year deep in the future (1 Year-Ahead price);

These forward prices are observed each day ti and are associated to the
spot price Si, i = 0, 1, 2, . . . , 1395.
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2.2.8 Is the Model for Spiky Prices a Satisfactory Model?

Let us begin showing that the relation established between the real data

and the reconstructed parameters of the model is a stable relationship.

The idea is the following.

We have more than 5 years of observations. We apply the calibration
procedure on a large window of about one year of consecutive observation
times.

We move this window through the data time series discarding the data
corresponding to the first observation time of the window and inserting the
data corresponding to the next observation time after the window.

In this way we have about “four years of windows” and for each one of
these windows we solve the corresponding calibration problem. We show
that, changing the window, the reconstructed parameters remain stable.

The reconstructions of the parameters obtained moving the window
along the data are shown below.
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The Black-Scholes model parameters: µ, σ.
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The spiky asset prices model parameters: a, b, λ.

2.2.9 Comparison Between the Real and the Forecasted Forward
Electric Power Prices

• A preliminary (ad hoc) step in the processing of real data is
introduced and used to obtain a satisfactory formulation of the
maximum likelihood problem as an optimization problem.

• The calibration procedure is applied to a large window of about three
years of consecutive observation times.

• The following forward electric power prices are obtained.
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2.2.10 Month-Ahead Prices
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Relative error on the forecasted values 0.1179.
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2.2.11 Quarter-Ahead Prices
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Relative error on the forecasted values 0.1318.
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2.2.12 1Year-Ahead Prices
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Relative error on the forecasted values 0.2547.
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Section 2.3
The Analysis of Electric Power Price Data and of the

S&P 500 Index Using a Multiscale Stochastic Volatility

Model

[Description] We use filtering and maximum likelihood methods to solve
a calibration problem for a multiscale stochastic volatility model
(including the risk premium parameters when necessary) and its two
initial stochastic variances from the knowledge, at discrete times, of the
asset price and, eventually, of the prices of call and/or put European
options on the asset. This problem is translated in a maximum likelihood
problem with the likelihood function defined through the solution of a
filtering problem. We develop a tracking procedure that is able to track
the asset price and the values of its two stochastic variances for time
values where there are no data available. The solution of the calibration
problem and the tracking procedure are used to do the analysis of data
time series and to forecast asset and option prices. Specifically we study
two time series of electric power price data taken from the U.S. electricity
market and the 2005 data relative to the US S&P 500 index and to the
prices of a call and a put European option on the S&P 500 index. The
forecasts of the asset prices and of the option prices computed with the
tracking procedure are compared with the prices actually observed and
the comparison shows that they are of very high quality even when we
consider ”spiky” electric power price data.

[Paper] Fatone L., Mariani F., Recchioni M.C., Zirilli F. (2013). The
analysis of real data using a multiscale stochastic volatility model,
European Financial Management 19(1), 153-179.

[Website] http://www.econ.univpm.it/recchioni/finance/w9
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2.3.1 Outline of the Presentation

• Electric power price data

• The multiscale stochastic volatility model

• Formulae to forecast prices in the multiscale stochastic volatility
model

• The calibration and filtering problems

• The maximum likelihood and the least squares approaches to the
calibration problem

•Analysis of electric power prices and of the S&P500 index

•References

2.3.2 Notations

• St asset or commodity price at time t;

• µ drift rate of St;

• xt = ln(St/S0) log-return of the asset or of the commodity price at
time t;

• C̃t observed price at time t of an European call option on the asset or
commodity whose price is St with maturity time T and strike price
E;

• P̃t observed price at time t of an European put option on the asset or
commodity whose price is St with maturity time T and strike price
E;

• vi,t, t > 0, i = 1, 2, stochastic variances associated to the asset or
commodity price St, t > 0.
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2.3.3 Electric Power Prices and Associated Log-Return
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The use of a (multiscale) stochastic volatility model to work with these
prices is not only useful but it is necessary.

We choose the multiscale stochastic volatility model proposed by Fatone
et al. 2009.

2.3.4 The Multiscale Stochastic Volatility Model

dxt = (µ+a1v1,t+a2v2,t)dt+b1
√
v1,tdW

1
t +b2

√
v2,tdW

2
t , t>0,

dv1,t = χ1(θ1 − v1,t)dt+ ε1
√
v1,tdZ

1
t , t > 0,

dv2,t = χ2(θ2 − v2,t)dt+ ε2
√
v2,tdZ

2
t , t > 0,

x0 = x̃0, v1,0 = ṽ1,0, v2,0 = ṽ2,0,

where the quantities ai, bi, χi, εi, θi, i = 1, 2, are real constants satisfying

χi ≥ 0, εi ≥ 0, θi ≥ 0, 2χiθi
ε2i

> 1, i = 1, 2. Moreover W 1
t , W

2
t , Z1

t , Z2
t ,

t > 0, are standard Wiener processes such that W 1
0 = W 2

0 = Z1
0 = Z2

0 =

0, dW 1
t , dW 2

t , dZ1
t , dZ2

t , t > 0, are their stochastic differentials.

The correlation structure of the model is given by:


W 1 Z1 W 2 Z2

W 1 1 ρ1 0 0

Z1 ρ1 1 0 0

W 2 0 0 1 ρ2

Z2 0 0 ρ2 1


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2.3.5 The Multiscale Stochastic Volatility Model Generalizes the
Heston Model

When we choose a1 = a2 = −1
2
, b1 = b2 = 1, the model reduces to:

dxt = (µ− 1

2
v1,t −

1

2
v2,t)dt+

√
v1,tdW

1
t +
√
v2,tdW

2
t , t > 0,

dv1,t = χ1(θ1 − v1,t)dt+ ε1
√
v1,tdZ

1
t , t > 0,

dv2,t = χ2(θ2 − v2,t)dt+ ε2
√
v2,tdZ

2
t , t > 0,

x0 = x̃0, v1,0 = ṽ1,0, v2,0 = ṽ2,0,

We call the model corresponding to this choice Double Heston model
that generalizes the Heston model (see Heston 1993).

When 0 < χ1 < χ2 the two stochastic variances v1,t, v2,t, t > 0, capture
respectively the long term variance (slow time scale) and the short term
variance (fast time scale). The model is multiscale when 0 < χ1 << χ2.

2.3.6 Model Parameters

The parameter vector that must be estimated (from the observed data) is:

Θ = (µ, χ1, θ1, ε1, ṽ1,0, λ1, χ2, θ2, ε2, λ2, ṽ2,0, ρ1, ρ2) ∈ R13,

where λi, i = 1, 2 are the risk premium parameters.

Note that when we work on the calibration problem using as data only
option prices we can incorporate the risk premium parameters λi, i = 1, 2,
associated to the risk neutral measure into the parameters χi and θi, i =

1, 2.

That is a model with χ∗i = χi+λi, θ∗i = θiχi/(χi+λi), instead of χi, θi,
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i = 1, 2 should be considered to take into account the fact that the option
prices are computed with respect to the risk neutral measure.

Note that when we work on the calibration problem using as data only
asset prices we can omit the risk premium parameters λi, i = 1, 2.

2.3.7 Why do We Use a Multiscale Model?

1. Several empirical studies of real data have shown that the term
structure of the implied volatility of the price of many underlyings
seems to be driven by two different factors varying on two different
time scales (χ1 << χ2).

2. This type of models is able to reproduce spikes through the use of
a fast time scale volatility together with an intermediate time scale
volatility.

Why do we use the previous multiscale model ?

1. The model contains as special cases some well known models such
as the Black Scholes model and the Heston model.

2. The model is explicitly solvable that is, under the assumptions made
above on the correlation structure, the transition probability density
function of the stochastic process solution of the model is
represented as a one dimensional integral of an explicitly known
integrand. This property makes possible to price put and call options
in the model computing one dimensional integrals, that is using easy
to handle formulae.
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2.3.8 Spikes Generated by the Multiscale Stochastic Volatility Model

• Multiscale trajectory parameters: µ = 0.03, θ1 = 0.01, θ2 = 0.03,
χ1 = 1, χ2 = 100, ρ1 = −0.5, ρ2 = −0.7, ε1 = 0.25

√
χ1, ε2 =

2
√
χ2, ṽ1,0 = 0.05, ṽ2,0 = 0.015;

• Heston trajectory parameters: µ = 0.03, θ1 = 0.01, χ1 = 1, ρ1 =

−0.5, ε1 = 0.25
√
χ1, ṽ1,0 = 0.05.

The choice χ1 = 1 and χ2 = 100 made in the multiscale trajectory
parameters guarantees that the stochastic variances change on different
time scales.

t
x

t

Example of synthetic data
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2.3.9 An Explicitly Solvable Model

• The transition probability density function of the stochastic process
solution of the model can be written as a one dimensional integral of
an explicitly known integrand (Fatone at al. 2009).

• The price of European vanilla call and put options in the model can be
written as a one dimensional integral of an explicitly known integrand
(Fatone et al. 2009).

• The joint probability density function of the state variables of the
model, that is of xt and of the associated stochastic variances v1,t,
v2,t conditioned to the observations of the asset prices and of
European options prices can be written as a double integral (Fatone
et al. 2013).

2.3.10 One Dimensional Integral Formula for the Transition
Probability Density Function of the Multiscale Model

We have derived the following formula:

pf (x, v1, v2, t, x
′, v′1, v

′
2, t
′) =

1

2π

∫
R
dk eık(x−x′−µτ) ·

2∏
i=1

e−2χiθi((νi+ζi)τ+ln(si,b/(2ζi)))/ε
2
i ·

[
e−2v′i(ζ

2
i −ν2i )si,g/(ε

2
i si,b)e−Mi(ṽi+vi)Mi

(
vi
ṽi

)(χiθi/ε
2
i )−1/2

·

I2χiθi/ε2i−1

(
2Mi(ṽivi)

1/2

)]
,

(x, v1, v2), (x′, v′1, v
′
2) ∈ R× R+ × R+, t, t′ ≥ 0, t− t′ > 0,
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where the quantities si,b, si,g, ṽi, Mi, i = 1, 2 are elementary functions.

2.3.11 The Elementary Functions Appearing in the Transition
Probability Density Function

The functions si,b, si,g, ṽi, Mi, i = 1, 2 are given by:

si,g=1−e−2ζiτ , si,b=ζi−νi+(ζi+νi)e
−2ζiτ,τ >0, i=1, 2,

ṽi =
4v′iζ

2
i e
−2ζiτ

(si,b)2
, Mi =

2si,b
εi2si,g

, τ > 0, i = 1, 2,

where

νi = −1

2
(χi + ı k biεiρi) , k ∈ R, i = 1, 2,

ζi =
1

2

(
4ν2

i + ε2
i (b

2
i k

2 + 2ı k ai)
)1/2

, k ∈ R, i = 1, 2.

2.3.12 European Vanilla Call Option Price in the Multiscale
Stochastic Volatility Model

Using the risk neutral formula it can be seen that the price of a European
vanilla call option at time t = 0 with time to maturity τ > 0, strike price
E and asset price S0 at time t = 0 is:
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C(τ,E,S0,ṽ1,0,ṽ2,0)=
S0

2π
e−rτe2µτ

∫ +∞

−∞
dk
e−ık(log(S0/E)+µτ)−log(E/S0)

−k2 − 3ı k + 2
·

2∏
i=1

(
e−2χ∗i θ

∗
i (νci+ζci+log(sci,b/(2ζ

c
i )))τ/ε2i e−2ṽi,0((ζci )2−(νci )2)sci,g/(ε

2
i s
c
i,b)
)
,

ṽ1,0, ṽ2,0 > 0,

where r is the risk free interest rate, ṽ1,0, ṽ2,0 are the stochastic variances
at time t = 0 that cannot be observed in real markets and that must be
estimated from price data. Finally we have:

νci = −1

2
(χ∗i + ı k biεiρi − 2biρiεi) , k ∈ R, i = 1, 2,

ζci =
1

2

(
4(νci )

2+ε2
i (b

2
i k

2+2ı k ai+4ı kb2
i−4(ai+b

2
i ))
)1/2

,

k ∈ R, i = 1, 2,

sci,g=1−e−2ζci τ , sci,b=ζci −νci +(ζci +νci )e
−2ζci τ , τ >0, i=1,2.

A similar formula holds for the put option price.

2.3.13 Conditioned Joint Probability Density Function

Let be t0 = 0, ti < ti+1, i = 0, 1, . . . , n− 1.

We suppose that the option price observations C̃i, P̃i, made at time t =

ti,i = 0, 1, . . . , n, are affected by a Gaussian error with mean zero and

known variance φi, i = 0, 1, . . . , n, and that the asset log-returns x̃i, i =

0, 1, . . . , n, are observed without error.
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The joint probability density function of xt and of the associated

stochastic variances v1,t, v2,t conditioned to the observations

Ft = {(x̃i, C̃i, P̃i) : ti ≤ t, i > 0}, t > 0, can be represented as follows:

pi(x, v1, v2, t|Θ)=

∫ +∞

0

dv′1

∫ +∞

0

dv′2pf (x,v1,v2,t,x̃i,v
′
1,v
′
2,ti)

fi(v
′
1, v
′
2; Θ),

(x, v1, v2) ∈ R× R+ × R+, ti < t < ti+1, i = 0, 1, . . . , n,

pi(x, v1, v2, ti|Θ)=δ(x−x̃i)fi(v1,v2; Θ), (x,v1,v2)∈R×R+×R+,

i = 0, 1, . . . , n,

where fi(v′1, v
′
2; Θ), i = 0, 1, . . . , n are given below.

2.3.14 The Functions fi, i = 0, 1, . . . , n

f0(v1, v2; Θ) = δ(v1 − ṽ1,0)δ(v2 − ṽ2,0), (v1, v2) ∈ R+ × R+,

and for i = 1, 2, . . . , n:

fi(v1, v2; Θ)=
pi−1(x̃i, v1, v2, t

−
i |Θ)π1(x̃i, v1, v2, ti|Θ)∫ +∞

0

∫ +∞
0

pi−1(̃xi,v′1,v
′
2,t
−
i |Θ)π1(̃xi,v′1,v

′
2,ti|Θ)dv′1dv

′
2

,

(x, v1, v2) ∈ R× R+ × R+,

π1(x̃i, v1, v2, ti|Θ) =
1√

2πφi

1√
2πφi

·

e

(
− 1

2φi
[(C̃i−C(x̃i,v1,v2,ti;Ki,Ti,Θ))2+(P̃i−P (x̃i,v1,v2,ti;Ki,Ti,Θ))2]

)
,

(x̃i, v1, v2) ∈ R× R+ × R+,
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where pi−1(x̃i, v1, v2, t
−
i |Θ) = limt→t−i

pi−1(x̃i, v1, v2, t|Θ),

limt→t−i
means left limit for t that goes to ti, i = 1, 2, . . . , n.

2.3.15 Formulae to Forecast the Log-Return and the Associated
Variances

Given the parameter vector Θ of the stochastic model, we can forecast
the values of the state variables of the model xt, v1,t, v2,t, t > 0,
respectively as the expected values x̂t|Θ, v̂1,t|Θ, v̂2,t|Θ, t > 0, conditioned
to the observations contained in Ft, t > 0, of the random variables xt,
v1,t, v2,t, t > 0. That is for ti ≤ t < ti+1, i = 0, 1, . . . , n we have:

x̂t|Θ = E(xt|Fti ,Θ)

= x̃i + (µ− θ1

2
− θ2

2
)(t− ti) +

1∑
j=0

{
θ2−j

(
1− e−χ2−j(t−ti)

2χ2−j

)

−(1− e−χ2−j(t−ti))

2χ2−j

∫ +∞

0

dv2−jv2−j

∫ +∞

0

dvj+1fi(v1, v2; Θ)

}
v̂j,t|Θ

= E(vj,t|Fti ,Θ) = θj(1− e−χj(t−ti)))

+ e−χj(t−ti)
∫ +∞

0

∫ +∞

0

dv1dv2 vjfi(v1, v2; Θ), j = 1, 2,

2.3.16 Calibration and Filtering Problems

We want to estimate the parameter vector Θ of the multiscale model
starting from price data. To this aim we solve the following problems:

1. Calibration (Estimation) Problem: find an estimate of the vector Θ

starting from the observations, that is, for example, from the
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knowledge at time t = ti (ti < ti+1, tn+1 = +∞) of the stock

log-return x̃i and/or of a call option price C̃i,, and/or of a put option

price P̃i for i = 0, 1, . . . , n. This means find the value of the vector

Θ that makes most likely the observations Ft = {(x̃i, C̃i, P̃i) :

ti ≤ t}, t > t0.

2. Filtering Problem (Forecasting Problem): given the value of the
model parameter vector Θ forecast the stock log-return for t 6= ti,
i = 1, 2, . . . , n and the stochastic variances v1,t, v2,t for t 6= ti, and in
particular for t > tn. The filtering problem has been solved in the
previous slide and the probability density function conditioned to the
observations employed in its solution is used in the solution of the
calibration problem.

2.3.17 Calibration Problem - Maximum Likelihood Approach (ML)

Let R13 be the 13 dimensional real Euclidean vector space and letM be
the set of the admissible vectors Θ, that is:

M={Θ=(ε1, θ1, ρ0,1, χ1, ṽ0,1, µ, λ1, ε2, θ2, ρ0,2, χ2, ṽ0,2, λ2)

∈ R13 | εi χi, θi ≥ 0, i = 1, 2,
2χiθi
ε2
i

≥ 1,

−1 ≤ ρ0,i ≤ 1, ṽ0,i ≥ 0, χi + λi > 0, i = 1, 2}.

The solution of the following maximum likelihood problem is a point
Θ∗ whose coordinates are the parameter values that “make most” likely the
occurrence of the observations (x̃i, C̃i, P̃i) at time t = ti, i = 0, 1, . . . , n:

max
Θ∈M

F (Θ),
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where F (Θ) is the (log-)likelihood function defined as follows:

F (Θ)=
n−1∑
i=0

log
[ ∫ +∞

0

∫ +∞

0

pi(x̃i+1, v1, v2, t
−
i+1|Θ)

π1(x̃i+1, v1, v2, ti+1|Θ)dv1dv2

]
+

log[π1(x̃0, ṽ1,0, ṽ2,0, t0|Θ)], Θ ∈M∗.

2.3.18 Calibration Problem - Least Squares Approach (LS)

Let R11 be the 11 dimensional real Euclidean vector space and letM be
the set of the admissible vectors Θ, that is:

M∗ = {Θ = (ε1, θ
∗
1, ρ1, χ

∗
1, ṽ0,1, µ, ε2, θ

∗
2, ρ2, χ

∗
2, ṽ0,2) ∈ R11 |

εi,χ
∗
i ,θ
∗
i ≥0, i=1,2,

2χ∗i θ
∗
i

ε2
i

≥1,−1≤ρi≤1,ṽ0,i≥0,i=1,2},

at time t, t ≥ 0, we solve the following optimization problem:

min
Θ∈M∗

Lt(Θ),

where the objective function Lt(Θ), t ≥ 0, is defined as follows:

Lt(Θ)=
mc∑
i=1

[
Ct,Θ(S̃t, Ti, Ki)− C̃t(S̃t, Ti, Ki)

]2

+

mp∑
i=1

[
P t,Θ(S̃t, Ti, Ki)− P̃ t(S̃t, Ti, Ki)

]2

,

C̃t, P̃ t are the observed prices (data) of European vanilla call and put
options respectively and Ct,Θ, P t,Θ are the corresponding theoretical
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prices. Note only option prices are used as data in this formulation of the
calibration problem.

2.3.19 Numerical Results on Real Data: S&P 500 Index

1. LS approach. For each month we proceed solving the calibration
problem using all (in, at, out of the money) the call and put option
(daily closing) prices available to us relative to the third day of the
month. For example November 3, 2005 (mc = 303 call options prices
andmp = 284 put options prices). The implied values of the vector Θ

obtained solving the calibration problem using the data of November
3, 2005 (i.e. the third day of the month) are used to forecast the
option prices of November 7 (mc = 303, mp = 290), November 14
(mc = 305, mp = 295), and November 28 (mc = 292, mp = 265),
2005. This procedure is used for each month considered. The total
number of data used in each calibration problem is approximately
5− 600.

2. ML approach. For each month where we want to forecast the
S&P500 log-return we use the data contained in a window made of
the last fifteen consecutive observation days of the previous month.
For example to forecast the value of the log return in November 7,
14, 28, 2005 we use as data the last fifteen daily observations (daily
closing values) of October 2005 of the log-return of the S& P 500
index and of the call and put option (bid) prices on the S&P 500
index having maturity time December 16, 2005 and strike price
E = 1200. The total number of data used is 15× 3 = 45.
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2.3.20 Forecasted Values of Call and Put Options

November 28, 2005: European vanilla call and put option prices (V)
on the S&P500 index forecasted using the multiscale model and prices
observed in the market (model calibration done with the data of November
3, 2005) versus moneyness K/S0. The value of the S&P500 of November
28, 2005 is assumed to be known when the option prices are forecasted.
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2.3.21 Maximum Likelihood Calibration - Errors on Forecasts

number of daysin the

future of the forecast

eindex ecall option eput option

1 7.522 · 10−5 0.0659 0.0407

2 1.303 · 10−4 0.0559 0.0737

3 1.7509 · 10−4 0.0893 0.0952

4 2.6962 · 10−4 0.0528 0.0793

5 2.9114 · 10−4 0.0496 0.0822

15 3.7106 · 10−4 0.0268 0.1810

30 3.5094 · 10−4 0.0717 0.1099

Average of the relative errors of the forecasted values of the SP&500
and of the corresponding call and put option prices having strike price
E = 1200 and maturity time T = December 16, 2005 in January and
February 2005 when compared to the prices actually observed. Note that
the forecasts of the option prices are made using the forecasted values of
the S&P500 index.

2.3.22 Comparison Between Least Squares (LS) Approach and
Maximum Likelihood (ML) Approach

The quality of the forecasted values of the option prices is established
comparing the prices actually observed with the forecasted prices when
the maximum likelihood (ML) or the least squares (LS) method are used
in the calibration of the multiscale model.
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Date t εtmean,ML εtmean,LS

January 28, 2005 4.69 · 10−3 2.84 · 10−3

June 7, 2005 5.99 · 10−3 1.75 · 10−3

June 28, 2005 6.87 · 10−3 2.56 · 10−3

November 7, 2005 3.68 · 10−3 3.04 · 10−3

November 14, 2005 3.07 · 10−3 2.21 · 10−3

November 28, 2005 3.21 · 10−3 2.41 · 10−3

• The ML approach uses as data only fifteen values (observed in fifteen
consecutive days) of a unique option price (call or put) (exercise price
E = 1200, maturity date Decem ber16, 2005) and of the S&P 500
log-return.

• The LS approach uses as data about 5-600 option prices (both calls
and puts) observed in a given day.

Remember that the calibration in the LS approach is made assuming
known the data up to the third day of the month where we do the forecasts.

2.3.23 Analysis of Electric Power Prices

The numerical experiment considers two time series of electric power
price data. The first time series consists of 365 daily observations S̃i,
i = 0, 1, . . . , 364, that is it is a year, made of 365 days, of daily
observations. The second time series consists of 765 daily observations
Ŝi, i = 0, 1, . . . 764. In this experiment no option price data are used. The
following Figures show the daily log-return increment
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x̃i − x̃i−1 = log(S̃i/S̃i−1), i = 1, 2, . . . , 364, of the electric power price
data S̃i, i = 0, 1, . . . , 364, and the log-return increment of the electric
power price data Ŝi, i = 0, 1, . . . , 364.
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(a)

(b)
Electric log-return increment series (S̃i) with no spikes (a) electric log-return increment
series (Ŝi) with spikes (b).
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2.3.24 Analysis of Electric Power Prices: Numerical Results

We begin the analysis of these time series calibrating the multiscale
model using a data window made of 26 consecutive daily observations
and we move this window along the time series substituting the first
observation of the window with the next observation after the window.
Figures (c) and (d) show the results obtained solving the 340(=365-26+1)
calibration problems associated to the two time series (Figures (a) and
(b)) of data as a function of the index i1 for i1 = 1, 2, . . . , 340. The index
i1 is the index associated to the first observation day of the data window
used in the calibration.
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(c)
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(d)
Estimated parameter values obtained solving 341 calibration problems using as data the
electric power prices (time series with no spikes, Figures (a),(c)) and (time series with
spikes, Figures (b),(d)) versus the calibration problem number i1.
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2.3.25 Analysis of Electric Power Prices: Description of the Results

We focus our attention on Figures (c) and (d) to point out the different
behaviour of the estimated parameter values in the two cases. In absence
of spikes (Figure (c)) the parameters εi, θi, χi, i = 1, 2, are stable, that
is they are approximately constants as a function of i1, and χ1 and χ2

are of the same order of magnitude (i.e.: χ1 ≈ 1, χ2 ≈ 4). In presence
of spikes (Figure (d)) the parameters εi, θi, χi, i = 1, 2, have a jump in
correspondence of the first spike. Moreover looking Figure (b) and Figure
(d) we can see that the calibration procedure produces two values of the
ratio χ1/χ2, in particular after the spike (i.e. i1 > 100) there is a jump in
the ratio χ1/χ2 and we have χ1 << χ2.
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(c)
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(d)
Estimated parameter values (time series with no spikes, Figure (c)) and (time series with
spikes, Figure (d)) versus the calibration problem number i1.
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2.3.26 Analysis of Electric Power Prices: Forecasted Prices

Using the formulae presented above to forecast the log-return xt and the
corresponding price St when we use as data the electric power prices Ŝi,
i = 0, 1, . . . , 764 (time series with spikes) we obtain the results shown in
the Figures below.
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(a)

(b)
Forecasted values (one day in the future) (stars) and observed values (squares) of the
log-returns (a) and corresponding forecasted values (one day in the future) (stars) and
observed values (squares) of electric power prices (b).

Forecasted values and observed values one day in the future (Movie)
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2.3.27 Future Work

• Use the multiscale stochastic volatility model to evaluate insurance
products such as life insurance products. That is we want to apply
the approach proposed here, typical of quantitative finance, to the
problem of pricing insurance products coupling to the stochastic
equations that define the multiscale model (used to describe, for
example, the S&P 500 that is the financial part of the life insurance
product) a new stochastic differential equation that models some
typical insurance variable, for example, a demographic variable
(such as mortality).

• Develop efficient grid enabled algorithms to solve the optimization
problems coming from the application of the maximum likelihood
approach to the calibration problem.

Note that several numerical experiments and digital movies relative to
the problems considered here can be found in the website:
http://www.econ.univpm.it/recchioni/finance/w8.

A more general reference to the work in mathematical finance of the
authors and of their coauthors is the website:
http://www.econ.univpm.it/recchioni/finance.
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