Chapter 3

On Paranorm Zweier

I-Convergent Sequence Spaces

“There is no place in the world for ugly mathematics. It may be very hard to define mathematical beauty but
that is just as true of beauty of any kind , we may not know quite, what we mean by a beautiful poem, but
that does not prevent us from recognizing one when we read it.”-Hardy
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3.1 Introduction

The following subspaces of w were first introduced and discussed by
Maddox [56] :

llp) ={rcw: ; |z [P < o0},
loo(p) ={z €w: Sup | [P < oo},
c(p) ={rew: liin |z, — |P* =0, for somel e C },
co(p) ={rew: li}gn |z |Pr =0, },
where p = (py) is a sequence of strictly positive real numbers.
After then Lascarides[53-54] defined the following sequence spaces :

lo{p} = {z € w: there exists r > 0 such that sup |z;7|P*t; < oo},
k

co{p} = {x € w: there exists > 0 such that liin |zgr|Pet = 0, },

I{p} = {x € w: thereexists r > 0 such that ) |zyr|P*t; < oo},
k=1

Where t;, = p,zl, forall ke N.

Recently Khan and Ebadullah [38] introduced the following classes of

sequence spaces:
2" = {(z)) €w: {k € N: I —lim ZPz = L for some L} € I};
ZE={(zp) ew:{keN: I —limZPzx =0} € I};

ZI = {(xp) € w:sup |ZPz] < oo},
k
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We also denote by
mk = 2z, n 2!

and
mfgo =Z.,NZL.
In this chapter we introduce the following classes of sequence spaces:
Zq) ={(z) €ew: {k e N:|ZPx — L|* > ¢} € I, for some Le C };
Z(q) = {(z) €w: {k e N:|ZPz|% > ¢} € I};

Z1(q) = {(wx) € w  sup| 27| < oc}.
k

We also denote by

m%(q) = ZL(q) N Z'(q);

and
m% (q) = ZL(q) N Z5(q);

where ¢ = (qy.), is a sequence of positive real numbers.

Throughout the chapter, for the sake of convenience we will denote by
ZPx =/ ZPy =/, 2Pz = 2/ forall z,y, z € w.

3.2 Main Results

Theorem 3.2.1. The classes of sequences Z'(q), Z{(q), mL(q) and

I .
mz, (q) are linear spaces.

Proof. We shall prove the result for the space Z!(q). The proof for the

other spaces will follow similarly.
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Let (z1), (yx) € Z1(q) and let o, 3 be scalars. Then for a given ¢ > 0

we have
{keN: |x,/€—L1|q’“ > - , forsome L, € C } € I,
2M,
{keN: |y,é—L2]q’“ > L, forsome L, € C } € [;
2M,
where
M; = Dmax{1,sup |a|%};
k
My = Dmax{1, sup |B|*};
k
and
D = maz{1,2%7'} where H = supgq; > 0.
k
Let

A ={keN: |z — L|* < ﬁ for some L, € C } € £(I);
1

Ay ={k € N: |y, — Ly|™ < ﬁ for some L, € C } € £(I);
2
be such that A, A5 € I. Then
As = {k € N : |(a} + By}) — (aLy + BL)|%) < ¢}
€
O {keN:|a|%z] — Ly|* < Q—Ml\a]qu}

€
N{k € N : |B|%|y, — Ly|™ < ——|8|*D}.
{k € N: 8%y = Lol < 3-13"D}
Thus A C ASU AS € I. Hence (axy, + Byx) € Z'(q). Therefore Z7(q)
is a linear space. The rest of the result follows similarly.

Theorem 3.2.2. Let (qx) € loo. Then m%(q) and m% (q) are paranormed

spaces, paranormed by

g(z) = sup |37k|%, where M = max{1,sup g}
k k
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Proof. Let 7 = (z),y = (yx) € mL(q).

[i] Clearly, g(z) = 0 if and only if x = 0.
[ii] g(z) = g(—x) is obvious.
[iii] Since { < 1 and M > 1,using Minkowski’s inequality we have
% % %
sup |zx + yp| M < sup |zg| ™ + sup |yg| .
k k k
[iv] Now for any complex A we have (\;) such that \;, — A, (K — 00).
Let 2, € mL(q) such that |z, — L|% > e. Therefore,
g(x — Le) = sup |zy — L|§T]§ < sup |xk|qﬁk + sup |L|%,
k k k
where e = (1,1,1.....). Hence
9k = AL) < g(Anwk) + g(AL) = Ang(x) + Ag(L),
as k — oo. Hence mL(q) is a paranormed space. The rest of the
result follows similarly.
Theorem 3.2.3. mL(q) is a closed subspace of 1., (q).

Proof. Let (z\") be a Cauchy sequence in mZ(g) such that (™ — z.

We show that z € mZL (g). Since (™) € mL(g), then there exists a, such

that
{(keN:|z™ —q,| >e} el

We need to show that

[i] (a,) converges to a.

[ii] fU ={k eN: |z —a|] <e}, thenU° € I.
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[i] Since (x,(cn)) is a Cauchy sequence in m%(q) then for a given ¢ > 0,

there exists kg € N such that

sup |$l(€") — :)3,(;)| < g, foralln,i > k
k

For a given € > 0, we have
B, ={keN: |x,(€n) — ZL‘](;)| < g},
Bi={keN:|z\" —q) < g},
W= {keN: |z —a,| < g}.

Then B¢

ne)

B¢, Bt el

Let
B¢ =By, UB;UB,,

where
B ={keN:|a;—a,| <€}

Then B¢ € 1. We choose ky € B¢, then for each n,7 > ky, we have
{(keN:|a—ay <} 2{keN: |z —qf <§}
N{keN: |x§€n) — .73](;)| < %} N{keN: |ac,(€") —ap| < g}

Then (a,,) is a Cauchy sequence of scalars in C , so there exists a scalar
a € C such that a,, — a, as n — oo.
[ii] Let 0 < 6 < 1 be given. Then we show that if

U={keN:|zxy—a|* <},
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then U¢ € I. Since (™ — z, then there exists qo € N such that

P={keN:|z® —z| < (3%)1‘/[} [3.1]

which implies that P¢ € [.
The number ¢, can be so chosen that together with [3.1], we have

)
Q= {k €N:lay — af* < (55)M},

such that Q¢ € 1

Since
{keN:|zl®) —q |7 >} el

Then we have a subset S of N such that S¢ € I, where
)
S = {k’ eEN: |flf(q0) — aq0|q’“ < (3—D)M}
Let
U= P UQ“US",
where
U={keN:|zp—a|™ <}

Therefore for each k£ € U¢, we have

{keN: |z, —a|® <6} D{keN: |z® — g% < (%)M}

) )
N{keN: |x(qo) - aqo|qk < <3_D)M} N{keN: |aq0 —al™ < (3_D>M}

Then the result follows.

Since the inclusions m% (¢) C lw(q) and m% (q) C Il (q) are strict so in
view of Theorem 2.2.3 we have the following result.
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Theorem 3.2.4. The spaces m%(q) and m% (¢q) are nowhere dense
subsets of o, (q).

Theorem 3.2.5. The spaces m¥%(¢) and m¥%_(g) are not separable.

Proof. We shall prove the result for the space m%(q). The proof for the
other spaces will follow similarly.

Let M be an infinite subset of N of increasing natural numbers such that
M e 1. Let
1, ifke M,
dx = .
2, otherwise.

Let

Py={(z) :zx=0or 1, for k € M and zy = 0, otherwise}.

Clearly F, is uncountable. Consider the class of open balls

By = {B(=, %) .2 € Py

Let C; be an open cover of mL(q) containing B;. Since B is
uncountable, so C; cannot be reduced to a countable subcover for m%(q).

Thus m%(q) is not separable.
Theorem 3.2.6. Let G = sup g < oo and [ an admissible ideal. Then
k
the following are equivalent:
[a] (xx) € Z7(q);
[b] there exists(yx) € Z(q) such that x, = yy, for a.ak.rl;

[c] there exists(yx) € Z(q) and (x3) € Z[(q) such that z), = y; + 2, for
allk e Nand {k e N: |y, — L|*) > e} € I ;
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[d] there exists a subset
K ={k; < ky....} of N,
such that K € £(I) and

lim |xy, — L|%» = 0.
n—oo

Proof.
[a] implies [b].
Let (z) € Z7(q). Then there exists L € C such that

{(keN: |z, —L|* >ct el

Let (m;) be an increasing sequence with m; € N such that

{(k<my: |z, —LI*>t"Y el

Define a sequence (yx) as

yr =z, forall £k <m;.

Form; < k < myq,t €N,

o, if |z} — L|% < 72,
k= .
Y L, otherwise.

Then (yx) € Z(¢) and from the following inclusion
{k<mp:an g} C{k<my:laf — L") > e} € I,
we get x, = yy, for a.a.kr.L
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[b] implies [c].

For (x;) € Z!(q), there exists (yx) € Z(q) such that x;, = 1y, for
a.akrl Let

K ={keN:x,#yc}

then k € I. Define a sequence (z) as

2. =
g 0, otherwise.

Then 25, € Z{(q) and yi, € Z(q).
[c] implies [d].
Suppose [c] holds. Let € > 0 be given. Let
Pi={keN:|z|®*>c} el
and

KIPfI{k1<k2<k3<}€£(]>

Then we have

lim \xé — L|%» = 0.
n—+00 n

[d] implies [a].

Let
K:{k1<k2</€3<}€£(1>
and

lim |xé — L|%n = 0.
n—00 n

Then for any € > 0, and Lemma 3.1.1., we have

{keN:|zp—L|* >} CKU{k € K : |z}, — L|" > e}.
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Thus (z1) € Z1(q).
Theorem 3.2.7. Let h = iréf qr and G = sup qx. Then the following
k
results are equivalent.
[a] G < oo and A > 0.

[b] Z{(q) = Z.

Proof. Suppose that G < oo and i > 0, then the inequalities
min{l,s"} < s% < maz{l,s°},

hold for any s > 0 and for all £ € N. Therefore the equivalence of [a] and

[b] is obvious.

Theorem 3.2.8. Let (q) and (ry) be two sequences of positive real
numbers. Then m% (q) 2 m%, (r) if and only if lim inf & > 0, where
K¢ C Nsuchthat K € 1.

Proof. Let lim inf 2 > 0 and (v) € m, (r). Then there exists 8 > 0
€

such that g, > (ry, for all sufficiently large k € K. Since (z;,) € m¥% (r)
for a given € > 0, we have

By={keN:|x|™* >e} el

Let Go = K¢ U By then Gy € I. Then for all sufficiently large k£ € G|,

{keN:|zu|%) > e} C{k e N:|z[™") > e} € 1.

Therefore (x) € m% (¢q). The converse part of the result follows

obviously.
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Theorem 3.2.9. Let (gx) and (1) be two sequences of positive real
numbers. Then m% (r) 2 m% (q) if and only if lim inf & > 0, where
S
K¢ C Nsuchthat K € I.

Proof. The proof follows similarly as the proof of Theorem 3.2.8.

Theorem 3.2.10. Let (gx) and (r;) be two sequences of positive real

numbers. Then ml(r) = m{(q) if and only if lim inf & >0, and
1 )

lim inf 2= > 0, where K C N such that K¢ € I.

keK Ik

Proof. By combining Theorem 3.2.8 and 3.2.9 we get the required result.
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