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9.1 Introduction

An Orlicz function is a function M : [0,∞) → [0,∞), which is
continuous, non-decreasing and convex with M(0) = 0,M(x) > 0 for
x > 0 and M(x) → ∞ as x → ∞.(see[4,47]). If the convexity of the
regular function M is replaced by M(x + y) ≤ M(x) + M(y) then this
function is called as Modulus function. This function was introduced by
Nakano[58]. Ruckle[64] and Maddox[56] further investigated the
modulus function with applications to sequence spaces.

In this chapter we introduce the following class of sequence spaces:

2ZI(f) = {(xij) ∈ 2ω : I − lim f(|x′

ij − L|) = 0, for some L ∈ C },

2ZI0 (f) = {(xij) ∈ 2ω : I − lim f(|x′

ij|) = 0},

2ZI∞(f) = {(xij) ∈ 2ω : {(i, j) ∈ N× N :

there exist K > 0 : f(|x′

ij|) ≥ K ∈ I}.

2Z∞(M) = {x = (xij) ∈ 2ω : sup
i,j

f(|x′

ij|) <∞}

Throughout we denote

mI
2Z(f) = 2ZI∞(f) ∩ 2Z(f) and mI

2Z0
(f) = 2ZI∞(f) ∩ 2Z0(f).

Throughout the article, for the sake of convenience we will denote by
Zp(xij) = x

′
, Zp(yij) = y

′
, Zp(zij) = z

′ for x, y, z ∈ ω.

“Under the leadership of our dear masters Banach and Steinhauss we were practicing in Lwów intricacies of
mathematics”- Orlicz-1968.
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9.2 Main Results

Theorem 9.2.1. For any modulus function f , the classes of sequences

2ZI(f), 2ZI0 (f),mI
2Z(f) and mI

2Z0
(f) are linear spaces.

Proof. We shall prove the result for the space 2ZI(f). The proof for the
other spaces will follow similarly. Let (xij), (yij) ∈ 2ZI(f) and let α, β
be scalars. Then

I − lim f(|x′

ij − L1|) = 0, for someL1 ∈ C ;

I − lim f(|y′

ij − L2|) = 0, for someL2 ∈ C ;

That is for a given ε > 0, we have

A1 = {(i, j) ∈ N× N : f(|x′

ij − L1|) >
ε

2
} ∈ I, [9.1]

A2 = {(i, j) ∈ N× N : f(|y′

ij − L2|) >
ε

2
} ∈ I. [9.2]

Since f is a modulus function, we have

f(|(αx′

ij + βy
′

ij)− (αL1 + βL2)) ≤ f(|α||x′

ij − L1|) + f(|β||y′

ij − L2|)

≤ f(|x′

ij − L1|) + f(|y′

ij − L2|)

Now, by [9.1] and [9.2],

{(i, j) ∈ N× N : f(|(αx′

ij + βy
′

ij)− (αL1 + βL2)|) > ε} ⊂ A1 ∪ A2.

Therefore (αxij + βyij) ∈ 2ZI(f). Hence 2ZI(f) is a linear space.

We state the following result without proof in view of Theorem 2.1.
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Theorem 9.2.2. The spaces mI
2Z(f) and mI

2Z0
(f) are normed linear

spaces, normed by
||x′

ij||∗ = sup
i,j

f(|x′

ij|). [9.3]

Theorem 9.2.3. A sequence x = (xij) ∈ mI
2Z(f) I-converges if and only

if for every ε > 0 there exists Nε ∈ N such that

{(i, j) ∈ N× N : f(|x′

k − x
′

Nε|) < ε} ∈ mI
2Z(f) [9.4]

Proof. Suppose that L = I − limx
′ . Then

Bε = {(i, j) ∈ N× N : |x′

ij − L| <
ε

2
} ∈ mI

2Z(f). For all ε > 0.

Fix an Nε ∈ Bε. Then we have

|x′

Nε − x
′

ij| ≤ |x
′

Nε − L|+ |L− x
′

ij| <
ε

2
+
ε

2
= ε

which holds for all (i, j) ∈ Bε. Hence

{(i, j) ∈ N× N : f(|x′

ij − x
′

Nε|) < ε} ∈ mI
2Z(f).

Conversely, suppose that

{(i, j) ∈ N× N : f(|x′

ij − x
′

Nε|) < ε} ∈ mI
2Z(f).

That is
{(i, j) ∈ N× N : |x′

ij − x
′

Nε| < ε} ∈ mI
2Z(f)

for all ε > 0. Then the set

Cε = {(i, j) ∈ N× N : x
′

ij ∈ [x
′

Nε − ε, x
′

Nε + ε]} ∈ mI
2Z(f) for all ε > 0.

Let Jε = [x
′
Nε
−ε, x′

Nε
+ε]. If we fix an ε > 0 then we have Cε ∈ mI

2Z(f)

as well as C ε
2
∈ mI

2Z(f). Hence Cε ∩ C ε
2
∈ mI

2Z(f). This implies that

Jε ∩ J ε
2
6= φ
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that is
{(i, j) ∈ N× N : x

′

ij ∈ J} ∈ mI
2Z(f)

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by
induction we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Iij ⊇ ...........

with the property that diam Iij ≤ 1
2
diam Ik−1 for (k=2,3,4,.....) and

{(i, j) ∈ N× N : x
′
ij ∈ Iij} ∈ mI

2Z(f) for (k=1,2,3,4,......).

Then there exists a ξ ∈ ∩Ik where (i, j) ∈ N×N such that ξ = I−limx
′ .

So that f(ξ) = I − lim f(x
′
), that is L = I − lim f(x

′
).

Theorem 9.2.4. Let f and g be modulus functions that satisfy the 42-
condition. If X is any of the spaces 2ZI , 2ZI0 ,mI

2Z and mI
2Z0

, then the
following assertions hold
(a)X(g) ⊆ X(f.g),
(b)X(f) ∩X(g) ⊆ X(f + g)

Proof. (a) Let (xij) ∈ 2ZI0 (g). Then

I − lim
ij
g(|x′

ij|) = 0 [9.5]

Let ε > 0 and choose δ with 0 < δ < 1 such that f(t) < ε for 0 < t < δ.
Write yij = g(|x′

ij|) and consider

lim
i,j
f(yij) = lim

i,j
f(yk)yij<δ + lim

i,j
f(yij)yij>δ

We have
lim
i,j
f(yij) ≤ f(2) lim

i,j
(yij) [9.6]
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For yij > δ, we have yij <
yij
δ
< 1 +

yij
δ

. Since f is non-decreasing, it
follows that

f(yij) < f(1 +
yij
δ

) <
1

2
f(2) +

1

2
f(

2yk
δ

)

Since f satisfies the42-condition, we have

f(yij) <
1

2
K
yij
δ
f(2) +

1

2
K
yij
δ
f(2) = K

yij
δ
f(2)

Hence
lim
i,j
f(yij) ≤ max(1, K)δ−1f(2) lim

i,j
(yij). [9.7]

From [9.5], [9.6] and [9.7], we have (xij) ∈ 2ZI0 (f.g). Thus

2ZI0 (g) ⊆ 2ZI0 (f.g). The other cases can be established following similar
technique.

(b) Let (xij) ∈ 2ZI0 (f) ∩ 2ZI0 (g). Then I − lim
i,j
f(|x′

ij|) = 0 and

I − lim
i,j
g(|x′

ij|) = 0

The rest of the proof follows from the following equality

lim
i,j

(f + g)(|x′

ij|) = lim
ij
f(|x′

ij|) + lim
i,j
g(|x′

ij|).

Corollary 9.2.5. X ⊆ X(f) for X = 2ZI , 2ZI0 ,mI
2Z and mI

2Z0
.

Theorem 9.2.6. The spaces 2ZI0 (f) and mI
2Z0

(f) are solid and
monotone.

Proof. We shall prove the result for the sequence space 2ZI0 (f). Let
(xij) ∈ 2ZI0 (f). Then

I − lim
i,j
f(|x′

ij|) = 0. [9.8]
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Let (αij) be a sequence of scalars with |αij| ≤ 1 for all (i, j) ∈ N × N.
Then the result follows from [9.8] and the following inequality

f(|αijx
′

ij|) ≤ |αij|f(|x′

ij|) ≤ f(|x′

ij|) for all (i, j) ∈ N× N.

That the space 2ZI0 (f) is monotone follows from the Lemma 1.12. For
mI

2Z0
(f) the result can be proved similarly.

Theorem 9.2.7. The spaces 2ZI(f) and mI
2Z(f) are neither solid nor

monotone in general .

Proof. We prove this result by providing a counter example. Let I = Iδ

and f(x) = x2 for all x ∈ [0,∞). Consider the K-step space XK(f) of X
defined as follows

Let (xij) ∈ X and let (yij) ∈ XK be such that

(yij) =

{
(xij) if i+j is even,

0, otherwise.

Consider the sequence (xij) defined by (xij) = 1 for all (i, j) ∈ N× N.
Then (xij) ∈ 2ZI(f) but its K-stepspace preimage does not belong to

2ZI(f). Thus 2ZI(f) is not monotone. Hence 2ZI(f) is not solid.

Theorem 9.2.8. The spaces 2ZI(f) and 2ZI0 (f) are sequence algebras.

Proof. We prove that the sequence space 2ZI0 (f) is a sequence algebra.
Let (xij), (yij) ∈ 2ZI0 (f). Then

I − lim f(|x′

ij|) = 0 and I − lim f(|y′

ij|) = 0

Then we have

I − lim f(|x′

ij.y
′

ij|) = 0
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Thus (xij.yij) ∈ 2ZI0 (f) is a sequence algebra. For the space 2ZI0 (f),
the result can be proved similarly.

Theorem 9.2.9. The spaces 2ZI(f) and 2ZI0 (f) are not convergence
free in general.

Proof. We give a counter example to prove this result.

Let I = If and f(x) = x3 for all x ∈ [0,∞). Consider the sequence
(xij) and (yij) defined by

xij =
1

i+ j
and yij = i+ j for all (i, j) ∈ N× N.

Then (xij) ∈ 2ZI(f) and 2ZI0 (f), but (yij) /∈ 2ZI(f) and 2ZI0 (f).
Hence the spaces 2ZI0 (f) and 2ZI0 (f) are not convergence free.

Theorem 9.2.10. If I is not maximal and I 6= If , then the spaces 2ZI(f)

and 2ZI0 (f) are not symmetric.

Proof. Let A ∈ I be infinite and f(x) = x for all x ∈ [0,∞). If

xij =

{
1, for (i, j) ∈ A,
0, otherwise.

Then by lemma 1.14 (xij) ∈ 2ZI0 (f) ⊂ 2ZI(f). Let K ⊂ N be such
that K /∈ I and N−K /∈ I . Let φ : K → A and ψ : N−K → N− A be
bijections, then the map π : N→ N defined by

π(k) =

{
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(m)π(n) /∈ 2ZI(f) and xπ(m)π(n) /∈ 2ZI0 (f).
Hence 2ZI(f) and 2ZI0 (f) are not symmetric.
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Theorem 9.2.11. Let f be a modulus function. Then

2ZI0 (f) ⊂ 2ZI(f) ⊂ 2ZI∞(f).

Proof. Let (xij) ∈ 2ZI(f). Then there exists L ∈ C such that

I − lim f(|x′

ij − L|) = 0

We have f(|x′
ij|) ≤ f(|x′

ij − L|) + f(|L|). Taking the supremum over
(i, j) on both sides we get (xij) ∈ 2ZI∞(f). The inclusion

2ZI0 (f) ⊂ 2ZI(f) is obvious.

Theorem 9.2.12. The function ~ : mI
2Z(f) → R is the Lipschitz

function, where mI
2Z(f) = 2ZI∞(f) ∩ 2ZI(f), and hence uniformly

continuous.

Proof. Let x, y ∈ mI
2Z(f), x 6= y. Then the sets

Ax = {(i, j) ∈ N× N : |xk − ~(x)| ≥ ||x− y||∗} ∈ I,

Ay = {(i, j) ∈ N× N : |yk − ~(y)| ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {(i, j) ∈ N× N : |xij − ~(x)| < ||x− y||∗} ∈ mI
2Z(f),

By = {(i, j) ∈ N× N : |yk − ~(y)| < ||x− y||∗} ∈ mI
2Z(f).

Hence alsoB = Bx∩By ∈ mI
2Z(f), so thatB 6= Φ. A Now taking (i, j)

in B,

|~(x)− ~(y)| ≤ |~(x)− xij|+ |xij − yij|+ |yij − ~(y)| ≤ 3||x− y||∗.

Thus ~ is a Lipschitz function. For the space mI
2Z0

(f) the result can be
proved similarly.
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Theorem 9.2.13. If x, y ∈ mI
2Z(f), then (x.y) ∈ mI

2Z(f) and
~(xy) = ~(x)~(y).

Proof. For ε > 0

Bx = {(i, j) ∈ N× N : |xij − ~(x)| < ε} ∈ mI
2Z(f),

Bx = {(i, j) ∈ N× N : |yij − ~(y)| < ε} ∈ mI
2Z(f).

Now,

|xijyij − ~(x)~(y)| = |xijyij − xij~(y) + xij~(y)− ~(x)~(y)|

≤ |xij||yij − ~(y)|+ |~(y)||xij − ~(x)| [9.9]

As mI
2Z(f) ⊆ 2ZI∞(f), there exists an M ∈ R such that |xij| < M and

|~(y)| < M .

Using eqn[9.9] we get

|xijyij − ~(x)~(y)| ≤Mε+Mε = 2Mε

for all (i, j) ∈ Bx ∩By ∈ mI(f). Hence (x.y) ∈ mI
2Z(f) and

~(xy) = ~(x)~(y). For the space mI
2Z0

(f) the result can be proved
similarly.
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