American Journal of BioScience

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Exploring Salinity Tolerance Mechanisms in Diverse Egyptian Grape Genotypes Based on Morpho-Physiological, Biochemical, Anatomical and Gene Expression Analysis

Viticulture is one of the agricultural sectors with major economic importance in Mediterranean climate zones. Salinity is considered a substantial issue for agricultural sectors in arid and semi-arid regions, where it has the potential to impair production of grape (Vitis vinifera), which is categorize as a moderately sensitive species to salinity, and its impact is expected to increase with climate change. As exploiting genetic diversity is one of the most promising strategies to cope with the negative impacts of climate change on viticulture and adapt under the new conditions to maintain grape production and quality, the study aimed to explore salinity tolerance mechanisms in diverse Egyptian grape genotypes based on morpho-physiological, biochemical, anatomical and gene expression analysis. Nine local grape genotypes; Baltim Eswid, Edkawy, Matrouh Eswid, Bez El-Naka, Bez El-Anza, Romy Ahmer, Gharibi, Fayoumi and Romy Abiad, were evaluated for tolerance under saline conditions. Salinity stress was induced in three levels of 2.28, 3.75 and 5.20 ms (using NaCl at 1000, 2000 and 3000 ppm, respectively) comparing to 695 µs irrigation water as control. Results indicated that, the growth of all investigated local grape genotypes was adversely affected by salt treatments in a cultivar-dependent manner. Proposed salt-tolerance mechanisms including; controlling the growth rate, reducing damage resulting from oxidative stress associated with salinity, keep balanced hydric status, structural alterations allowing protection and regulation of ions uptake. It was observed that, Edkawy local grape cultivar is a promising salt-tolerant genotype. On the other hand, Romy Abiad and Gharibi genotypes were classified as the most salt-sensitive comparable with other tested local cultivars. Bez El-Anza genotype which maintained 100% survivability under severe salinity stress condition was characterized by a remarkable decline in vegetative growth accompanied with keeping more leaves with a marked reduction in leaf area and most measurements of certain anatomical features, slight Na uptake, but undisputed oxidative stress indicators and down-regulated expression folds of AREB2 transcription factor; a sugar accumulation regulatory related gene. Therefore, local genotypes of Egyptian table grapes can be considered a storehouse of germplasm that should be conserved and not threatened with extinction or complete loss because they are adapted to severe environmental conditions and harsh cultural managements.

Grape, Salinity, Genotypes, Oxidative Stress, Biochemical, Anatomical, Gene Expression

APA Style

Mahmoud, R., Dahab, A., Mahmoud, G., El-Wahab, M. A., Ismail, A., et al. (2023). Exploring Salinity Tolerance Mechanisms in Diverse Egyptian Grape Genotypes Based on Morpho-Physiological, Biochemical, Anatomical and Gene Expression Analysis. American Journal of BioScience, 11(6), 171-186. https://doi.org/10.11648/j.ajbio.20231106.16

ACS Style

Mahmoud, R.; Dahab, A.; Mahmoud, G.; El-Wahab, M. A.; Ismail, A., et al. Exploring Salinity Tolerance Mechanisms in Diverse Egyptian Grape Genotypes Based on Morpho-Physiological, Biochemical, Anatomical and Gene Expression Analysis. Am. J. BioScience 2023, 11(6), 171-186. doi: 10.11648/j.ajbio.20231106.16

AMA Style

Mahmoud R, Dahab A, Mahmoud G, El-Wahab MA, Ismail A, et al. Exploring Salinity Tolerance Mechanisms in Diverse Egyptian Grape Genotypes Based on Morpho-Physiological, Biochemical, Anatomical and Gene Expression Analysis. Am J BioScience. 2023;11(6):171-186. doi: 10.11648/j.ajbio.20231106.16

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. FAO-OIV. FAO-OIV FOCUS. Table and Dried Grapes. Available from: fao-oiv-focus-2016.pdf. [Accessed 2016].
2. FAO. Food loss analysis for grapes value chains in Egypt. Cairo. Available from: https://doi.org/10.4060/cb4676en. [Accessed 2021].
3. USDA. Egypt: Overview of Egypt’s Table Grape Sector. Available from: https://www.fas.usda.gov/data/egypt-overview-egypts-table-grape-sector. [Accessed 8 December 2020].
4. Gutiérrez-Gamboa, G., Zheng, W., Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International. 2021, 139, 109946. https://doi.org/10.1016/j.foodres.2020.109946
5. Zhou-Tsang, A., Wu, Y., Henderson, S. W., Walker, A. R., Borneman, A. R., Walker, R. R., Gilliham, M. Grapevine salt tolerance. Australian Journal of Grape and Wine Research. 2021, 27(2), 149-168. https://doi.org/10.1111/ajgw.12487
6. Osman, M. H., Gaser, A. S. A., Kamel, A. Edkawy, a local grapevine cultivar. Journal of Agricultural Science, Mansoura University. 1999, 24(7), 3639-3645.
7. Barrs, H. D., Weatherley, P. E. A re-examination of the relative turgidity techniques for estimating water deficit in leaves. Australian Journal of Biological Sciences. 1962, 15(3), 413-428. http://dx.doi.org/10.1071/BI9620413
8. McKay, H. M. Electrolyte leakage from fine roots of conifer seedlings: a rapid index of plant vitality following cold storage. Canadian Journal of Forest Research. 1992, 22(9), 1371-1377. https://doi.org/10.1139/x92-182
9. McKay, H. M. Root electrolyte leakage and root growth potential as indicators of spruce and larch establishment. Silva Fennica. 1998, 32(3), 241-252. http://dx.doi.org/10.14214/sf.684
10. Wilner, J. Results of laboratory tests for winter hardiness of woody plants by electrolytic methods. Proceedings of the American Society for Horticultural Science. 1955, 66, 93-99.
11. Holm, G. Chlorophyll mutations in barley. Acta Agriculturae Scandinavica. 1954, 4(1), 457-471. http://dx.doi.org/10.1080/00015125409439955
12. Von Wettstein, D. Chlorophyll-letale und der submikroskopische formwechsel der plastiden. Experimental Cell Research. 1957, 12(3), 427-506. http://dx.doi.org/10.1016/0014-4827(57)90165-9
13. Cottenie, A. Soil and plant testing as a basis of fertilizer recommendations. FAO Soils Bulletin. 1980, 38/2.
14. Piper, C. S. Soil and Plant Analysis. Adelaide, Australia: The University of Adelaide Press; 1950, 368 pp.
15. Singleton, V. L., Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965, 16, 144-158. SingletonRossi (1).pdf
16. Savic, I. M., Nikolic, V. D., Savic-Gajic, I. M., Kundaković, T. D., Stanojkovic, T. P., Najman, S. J. Chemical composition and biological activity of the plum seed extract. Advanced Technologies. 2016, 5(2), 38-45. 2406-29791602038S.pdf (ceon.rs)
17. Quisumbing, E. Medicinal Plants of the Phillippines. Philippines: Katha Publishing Co. Inc.; 1978, 1262 pp.
18. Dhindsa, R. S., Plumb-Dhindsa, P., Thorpe, T. A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany. 1981, 32(1), 93-101. https://doi.org/10.1093/jxb/32.1.93
19. Velikova, V., Yordanov, I., Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science. 2000, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
20. Nassar, M. A., El-Sahhar, K. F. Botanical Preparations and Microscopy (Microtechnique). Dokki, Giza, Egypt: Academic Bookshop; 1998, 219 pp. (In Arabic).
21. Zandkarimi, H., Ebadi, A., Salami, S. A., Alizade, H., Baisakh, N. Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). PLoS ONE. 2015, 10(7), e0134288. https://doi.org/10.1371/journal.pone.0134288
22. Mohammadkhani, N., Heidari, R., Abbaspour, N., Rahmani, F. Salinity effects on expression of some important genes in sensitive and tolerant grape genotypes. Turkish Journal of Biology. 2016, 40(1), 95-108. https://doi.org/10.3906/biy-1501-67
23. Buesa, I., Pérez-Pérez, J. G., Visconti, F., Strah, R., Intrigliolo, D. S., Bonet, L., Gruden, K., Pompe-Novak, M., de Paz, J. M. Physiological and transcriptional responses to saline irrigation of young ‘Tempranillo’ vines grafted onto different rootstocks. Frontiers in Plant Science. 2022, 13, 866053. https://doi.org/10.3389/fpls.2022.866053
24. Snedecor, G. W., Cochran, W. G. Statistical Methods. 8th edn. Iowa, USA: Iowa State University Press; 1989, 503 pp.
25. Kuiper, P. J. C., Kuiper, D., Schuit, J. Root functioning under stress conditions: An introduction. Plant and Soil. 1988, 111(2), 249-253. https://www.jstor.org/stable/42937666
26. Gaser, A. S. A. Effect of saline irrigation water on three grape cultivars. Annals of Agricultural Science, Moshtohor. 1999, 37(4), 2715-2734. Effect of saline irrigation water on three grape cultivars_paper_en.pdf (bu.edu.eg)
27. Mahmoud, R. A., Dahab, A. A., Mahmoud, G. A., Abd El-Wahab, M. A., El-Bassel, E. H., Mahdy, E. M. B. Ampelographic and genetic diversity assessment of some local grape genotypes under Egyptian conditions. American Journal of Molecular Biology. 2023, 13(3), 183-196. https://doi.org/10.4236/ajmb.2023.133013
28. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. 2000, 51, 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
29. Hsiao, T. C., Xu, L. K. Sensitivity of growth of roots versus leaves to water stress: Biophysical analysis and relation to water transport. Journal of Experimental Botany. 2000, 51(350), 1595-1616. https://doi.org/10.1093/jexbot/51.350.1595
30. Fozouni, M., Abbaspour, N., Doulati Baneh, H. Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. VITIS—Journal of Grapevine Research. 2012, 51(4), 147-152. https://doi.org/10.5073/vitis.2012.51.147-152
31. Tian, X., He, M., Wang, Z., Zhang, J., Song, Y., He, Z., Dong, Y. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regulation. 2015, 77, 343-356. https://doi.org/10.1007/s10725-015-0069-3
32. El-Banna, M. F., AL-Huqail, A. A., Farouk, S., Belal, B. E. A., El-Kenawy, M. A., Abd El-Khalek, A. F. Morpho-physiological and anatomical alterations of salt-affected Thompson seedless grapevine (Vitis vinifera L.) to Brassinolide spraying. Horticulturae. 2022, 8(7), 568-592. https://doi.org/10.3390/horticulturae8070568
33. Yildirim, E., Turan, M., Guvenc, I. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition. 2008, 31(3), 593-612. https://doi.org/10.1080/01904160801895118
34. Radoglou, K., Cabral, R., Repo, T., Hasanagas, N., Sutinen, M. L., Waisel, Y. Appraisal of root leakage as a method for estimation of root viability. Plant Biosystems. 2007, 141(3), 443-459. https://doi.org/10.1080/11263500701626143
35. Hniličková, H., Hnilička, F., Orsák, M., Hejnák, V. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant, Soil and Environment. 2019, 65(2), 90-96. https://doi.org/10.17221/620/2018-PSE
36. Mansour, M. M. F., Salama, K. H. A. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany. 2004, 52(2), 113-122. https://doi.org/10.1016/j.envexpbot.2004.01.009
37. Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., Yurin, V. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany. 2014, 65(5), 1259-1270. https://doi.org/10.1093/jxb/eru004
38. Zelm, E., Zhang, Y., Testerink, C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology. 2020, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005
39. Abogadallah, G. M. Antioxidative defense under salt stress. Plant Signaling & Behavior. 2010, 5(4), 369-374. https://doi.org/10.4161/psb.5.4.10873
40. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment. 2010, 33(4), 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
41. Soylemezoglu, G., Demir, K., Inal, A., Gunes, A. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae. 2009, 123(2), 240-246. https://doi.org/10.1016/j.scienta.2009.09.005
42. Mohammadkhani, N., Abbaspour, N. Effects of salinity on antioxidant system in ten grape genotypes. Iranian Journal of Plant Physiology. 2018, 8(1), 2247-2255. https://ijpp.saveh.iau.ir/article_539068.html
43. Ahanger, M. A., Agarwal, R. M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma. 2017, 254, 1471-1486. https://doi.org/10.1007/s00709-016-1037-0
44. Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies. 2006, 15(4), 523-530. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress (pjoes.com)
45. Rahman, M. M., Das, R., Hoque, M. M., Zzaman, W. Effect of freeze drying on antioxidant activity and phenolic contents of Mango (Mangifera indica). International Food Research Journal. 2015, 22(2), 613-617. (23).pdf (upm.edu.my)
46. Abd Elbar, O. H., Farag, R. E., Eisa, S. S., Habib, S. A. Morpho-anatomical changes in salt stressed kallar grass (Leptochloa fusca L. Kunth). Research Journal of Agriculture and Biological Sciences. 2012, 8(2), 158-166. MORPHO-ANATOMICAL CHANGES IN SALT STRESSED KALLARGRASS (Leptochloa fusca(L (aensiweb.net)
47. Parida, A. K., Veerabathini, S. K., Kumari, A., Agarwal, P. K. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Frontiers in Plant Science. 2016, 7, 351. https://doi.org/10.3389/fpls.2016.00351
48. Maas, E. V., Nieman, R. H. Physiology of Plant Tolerance to Salinity. In Crop Tolerance to Suboptimal Land Conditions, Jung, G. A., Ed., USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.; 1978, pp. 277-299. https://doi.org/10.2134/asaspecpub32.c13
49. Hameed, M., Ashraf, M., Ahmad, M. S. A., Naz, N. Structural and Functional Adaptations in Plants for Salinity Tolerance. In Plant Adaptation and Phytoremediation, Ashraf, M., Ozturk, M., Ahmad, M. S. A., Eds., Dordrecht: Springer, 2010, pp. 151-170. https://doi.org/10.1007/978-90-481-9370-7_8
50. Ristic, Z., Jenks, M. A. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology. 2002, 159(6), 645-651. https://doi.org/10.1078/0176-1617-0743
51. Jenks, M. A., Ashworth, E. N. Plant Epicuticular Waxes: Function, Production, and Genetics. In Horticultural Reviews, Janick, J., Ed., vol 23. New York: John Wiley & Sons, Inc.; 1999, pp. 1-68. https://doi.org/10.1002/9780470650752.ch1
52. YuJing, Z., Yong, Z., ZiZhi, H., ShunGuo, Y. Studies on microscopic structure of Puccinellia tenuiflora stem under salinity stress. Grassland of China. 2000, 5, 6-9.
53. Atabayeva, S., Nurmahanova, A., Minocha, S., Ahmetova, A., Kenzhebayeva, S., Aidosov, S., Nurzhanova, A., Zhardamalieva, A., Asrandina, S., Alybayeva1, R., Li, T. The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology. 2013, 12(18), 2366-2377. doi: 10.5897/AJB2013.12161
54. Carcamo, H. J., Bustos, R. M., Fernandez, F. E., Bastias, E. I. Mitigating effect of salicylic acid in the anatomy of the leaf of Zea mays L. lluteno ecotype from the Lluta Valley (Arica-Chile) under NaCl stress. IDESIA (Chile). 2012, 30(3), 55-63. https://doi.org/10.4067/S0718-34292012000300007
55. Shabala, L., Mackay, A., Tian, Y., Jacobsen, S. E., Zhou, D., Shabala, S. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum. 2012, 146(1), 26-38. https://doi.org/10.1111/j.1399-3054.2012.01599.x
56. Longstreth, D. J., Nobel, P. S. Salinity effects on leaf anatomy: Consequences for photosynthesis. Plant Physiology. 1979, 63(4), 700-703. https://doi.org/10.1104/pp.63.4.700
57. Vijayan, K., Chakraborti, S. P., Ercisli, S., Ghosh, P. D. NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regulation. 2008, 56, 61-69. https://doi.org/10.1007/s10725-008-9284-5
58. Ortega, L., Fry, S. C., Taleisnik, E. Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. Journal of Experimental Botany. 2006, 57(14), 3945-3952. https://doi.org/10.1093/jxb/erl168
59. Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., del Rio, L. A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany. 2001, 52(364), 2115-2126. https://doi.org/10.1093/jexbot/52.364.2115
60. Baas, P., Werker, E., Fahn, A. Some ecological trends in vessel characters. IAWA Journal. 1983, 4(2-3), 141-159. https://doi.org/10.1163/22941932-90000407
61. Bartels, D., Souer, E. Molecular Responses of Higher Plants to Dehydration. In Plant Responses to Abiotic Stress. Topics in Current Genetics, Hirt, H., Shinozaki, K., Eds., vol 4, Berlin, Heidelberg: Springer; 2004, pp. 9-38. https://doi.org/10.1007/978-3-540-39402-0_2
62. Tattersall, E. A. R., Grimplet, J., DeLuc, L., Wheatley, M. D., Vincent, D., Osborne, C., Ergul, A., Lomen, E., Blank, R. R., Schlauch, K. A., Cushman, J. C., Cramer, G. R. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Functional & Integrative Genomics. 2007, 7, 317-333. https://doi.org/10.1007/s10142-007-0051-x
63. Dao, T. T. H., Linthorst, H. J. M., Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews. 2011, 10, 397-412. https://doi.org/10.1007/s11101-011-9211-7
64. Chong, J., Henanff, G. L., Bertsch, C., Walter, B. Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiology and Biochemistry. 2008, 46(4), 469-481. https://doi.org/10.1016/j.plaphy.2007.09.010
65. Ochsenbein, C., Przybyla, D., Danon, A., Landgraf, F., Gobel, C., Imboden, A., Feussner, I., Apel, K. The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. The Plant Journal. 2006, 47(3), 445-456. https://doi.org/10.1111/j.1365-313X.2006.02793.x
66. Wagner, D., Przybyla, D., Camp, R., Kim, C., Landgraf, F., Lee, K. P., Wursch, M., Laloi, C., Nater, M., Hideg, E., Apel, K. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science. 2004, 306(5699), 1183-1185. https://www.jstor.org/stable/3839489
67. Cushman, J. C., Bohnert, H. J. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology. 2000, 3(2), 117-124. https://doi.org/10.1016/S1369-5266(99)00052-7
68. Ma, Q., Sun, M., Lu, J., Liu, Y., Hu, D., Hao, Y. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiology. 2017, 174(4), 2348-2362. https://doi.org/10.1104/pp.17.00502