American Journal of Mathematical and Computer Modelling

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

An Examination of Different Types of Transportation Problems and Mathematical Models

Optimization processes in mathematics, computer science, and economics solve problems effectively by selecting the best element from a set of available alternatives. One of the most important and successful applications of optimization is the transportation problem (TP), which is a subclass of linear programming (LP) in operations research (OR). Its goal is to find shipping routes between supply and demand centers that will meet the demand for a given quantity of goods or services at each destination center while incurring the fewest transportation costs. Various transportation-related problems involving constraints, mixed constraints, intervals, bottlenecks, and uncertain quantities have recently received a great deal of attention. This relates to the transportation problem. In order to solve the TP, numerous researchers have proposed various exact, heuristic, and meta-heuristic strategies in the literature. Some strategies seek an initial, basic, feasible solution, whereas others seek the optimal way to solve the TP. Because it promotes economic and social activity, the transportation problem is important in operations research and management science. This research paper provides a high-level overview of various transportation-related issues and mathematical models. This can be used successfully to solve various business problems relating to the distribution of products, which are commonly referred to as transportation problems.

Classical Transportation Problems, Bottleneck Transportation Problems, Multi-objective Transportation Problems, Interval and Fuzzy Transportation Problems

APA Style

Ekanayake Mudiyanselage Uthpala Senarath Bandara Ekanayake, Wasantha Bandara Daundasekara, Sattambirallage Pantaleon Chrysantha Perera. (2022). An Examination of Different Types of Transportation Problems and Mathematical Models. American Journal of Mathematical and Computer Modelling, 7(3), 37-48. https://doi.org/10.11648/j.ajmcm.20220703.11

ACS Style

Ekanayake Mudiyanselage Uthpala Senarath Bandara Ekanayake; Wasantha Bandara Daundasekara; Sattambirallage Pantaleon Chrysantha Perera. An Examination of Different Types of Transportation Problems and Mathematical Models. Am. J. Math. Comput. Model. 2022, 7(3), 37-48. doi: 10.11648/j.ajmcm.20220703.11

AMA Style

Ekanayake Mudiyanselage Uthpala Senarath Bandara Ekanayake, Wasantha Bandara Daundasekara, Sattambirallage Pantaleon Chrysantha Perera. An Examination of Different Types of Transportation Problems and Mathematical Models. Am J Math Comput Model. 2022;7(3):37-48. doi: 10.11648/j.ajmcm.20220703.11

Copyright © 2022 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Adlakha, V., & Kowalski, K. (2009). Alternate solutions analysis for transportation problems, Journal of Business & Economics Research. 7 (11), 41-49.
2. Adlakha, V., & Kowalski, K. (2003). A simple heuristic for solving small fixed-charge transportation problems, Omega. 31, 205-211.
3. Adlakha, V., & Kowalski, K. (1999). An alternate solution algorithm for certain transportation problems, Int. J. Math. Educ. Sci. Technol. 30 (5), 719-728.
4. Agarwal, S., & Sharma, S. (2018). A Minimax Method for Time Minimizing, Transportation Problem with Mixed Constraints. International Journal of Computer & Mathematical Sciences, 7 (3), 1-6.
5. Ahmed, M. M., Khan, A. R., Uddin, S., & Ahme, F. (2016). A New Approach to Solve Transportation Problems. Open Journal of Optimization, 5, pp. 22-30.
6. Ahmed, M. M., Khan, A. R., Ahmed, F., & Uddin., S. (2016). Incessant Allocation Method for Solving Transportation Problems”, American Journal of Operations Research, 6, pp. 236-244.
7. Aizemberg, L., Kramer, H. H., Pessoa, A. A., & Uchoa, E. (2014). Formulations for a problem of petroleum transportation, European Journal of Operational Research. 237, 82–90.
8. Akilbasha, A., Natarajan, G., & Pandian, P. (2017). Solving Transportation Problems with Mixed Constraints In Rough Environment. International Journal of Pure and Applied Mathematics, 113 (9), 130-138.
9. Akilbasha, A., Natarajan, G., & Pandian, P. (2016). Finding an optimal solution of the interval integer transportation problem with rough nature by split and separation method In. J. of Pure and Applied Math.
10. Akilbasha, A., Pandian, P., & Natarajan, G. (2018). An innovative exact method for solving fully interval integer transportation problems. Informatics in Medicine Unlocked, 11: 95–99.
11. Aneja, Y. P., & Nair, K. P. K. (1979). Bi-criteria transportation problem. Manag. Sci., Vol. 25, pp. 73-78.
12. Anushya, B. Ramaand, B. and Sudha, L. (2019). Transportation Problem Using Intuitionistic Decagonal Fuzzy Number’. JRAR-International Journal of Research and Analytical Reviews. 271-277.
13. Arsham, H. (1992). Post optimality analyses of the transportation problem. Journal of the Operational Research Society, 1992, 43: 121–139.
14. Arora, S., & Khurana, A. (2002). A paradox in an indefinite quadratic transportation problem with mixed constraints. International Journal of Management and Systems, 18 (3): 301–318.
15. Balakrishnan, N. (1990). Modified Vogel’s approximation method for the unbalanced transportation problem, Appl. Math. Lett. 3 (2), pp 9–11.
16. Bander, A. S., Morovati, V., & Basirzadeh, H. (2015). A super non-dominated point for multi-objective transportation problems. Application and Applied Mathematics, Vol. 10. pp. 544-551.
17. Bai, G., & Yao, L. (2011). A simple algorithm for a multi-objective transportation model. International conference on business management and electronic information. pp. 479-482.
18. Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment, Management Science, 17, 4.
19. Bertsekas, D. P., & Castanon, D. A. (1989). The Auction Algorithm for the Transportation Problem, Annals of Operations Research. 20, pp 67-96.
20. Bielefeld, H. I. (1982). Solving the Transportation Problem with Mixed Constraints, ZOR. 26, 251-257.
21. Charnes A., Cooper W., & Henderson, A. (1953). An Introduction to Linear Programming. John Wiley & Sons, New York.
22. Chang, C. T. (2008). Revised multi-choice goal programming. Appl Math Model., Vol. 32, pp. 2587-2595.
23. Charnes, A., & Cooper, W. W. (1954). The stepping stone method of explaining linear programming calculations in transportation problems, Management Science. 1 (1), 49-69.
24. Christi, M. S. A. (2017). Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques, International Journal of Mathematical and Computational Sciences. 11, 4.
25. Dantzig, G. B. (1951). Application of the Simplex Method to a Transportation Problem, Activity Analysis of Production and Allocation. Koopmans, T. C., Ed., John Wiley and Sons, New York. 359-373.
26. Dantzig, G. B. (1963). Linear Programming and extensions, Princeton, NJ: Princeton University press.
27. Das, U. K., Babu, M. A., Khan, A. R., Helal, M. A., & Uddin, M. S. (2014). Logical development of vogel’s approximation method (LD-VAM): an approach to find basic feasible solution of transportation problem, International Journal of Scientific & Technology Research. 3 (2), pp 42-48.
28. Das, S. K., Goswami, A.. & Alam, S. S. (1999). Multiobjective transportation problem with interval cost, source and destination parameters”, European Journal of Operational Research, volume 117, pages 100-112.
29. Diaz, J. A. (1978). “Solving muliobjective transportation problems.” Ekonomicky matematicky obzor, Vol. 14, pp. 267-274.
30. Dinesh et al, “Trisectional fuzzy trapezoidal approach to optimize interval data based transportation problem”, Journal of King Saud University-Science., 2018.
31. Deshmukh, N. M. (2012). An Innovative method for solving transportation problem, International Journal of Physics and Mathematical Sciences. 2 (3), 86-91.
32. Ebrahimnejad, A. (2014). A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers, Applied Soft Computing, 19, 171–176.
33. Ekanayake, E. M. U. S. B., Daundasekara, W. B., & Perera. (2022). New Approach to Obtain the Maximum Flow in a Network and Optimal Solution for the Transportation Problems. Modern Applied Science; Vol. 16, No. 1.
34. Ekanayake, E. M. U. S. B., Perera, S. P. C., Daundasekara, W. B. & Juman, Z. A. M. S. (2020). A Modified Ant Colony Optimization Algorithm for Solving a Transportation Problem” Journal of Advances in Mathematics and Computer Science, 35 (5), 83-101.
35. Ekanayake E. M. U. S. B., Perera S. P. C., Daundasekara W. B.,& Juman Z. A. M. S. (2021). An Effective Alternative New Approach in Solving Transportation Problems. American Journal of Electrical and Computer Engineering. Special Issue: Artificial Intelligence in Electrical Power & Energy. Vol. 5, No. 1, pp. 1-8.
36. Evans, J. R., Jarvis, J. J., & Duke, R. A. (1977). Graphic matroids and the multicommodity transportation problem, Mathematical Programming. 13, 323-328.
37. Fang, S. C., Hu, H. F., & Wu, S. Y. (1999). Linear Programming with fuzzy coefficients in constraints, Computers and Mathematics with applications, 37, 63-76.
38. Ganesan, K. (2006). On some properties of interval matrices In. J. of. Mathematical sciences.
39. Gen, M., Choi, J., & Ida, K. (2000). Improved genetic algorithm for generalized transportation problem, Artif Life Robotics. 4, 96-102.
40. Garfinkel. R. S., & Rao. M. R. (1971). The bottleneck transportation problem, Naval Research Logistics Quarterly, 18, 465-472.
41. Goyal, S. K. (1984). Improving VAM for unbalanced transportation problems, Journal of Operational Research Society. 35 (12), 1113-1114.
42. Gupta, A., Khanna, S., & Puri. M. (1992). Paradoxical situations in transportation problems. Cahiers du Centre d’Etudes de Recherche Operationnell, 34: 37–49.
43. Gupta, S., Ali, I., & Ahmed, A. (2018). Multi-objective capacitated transportation problem with mixed constraint: a case study of certain and uncertain environment. Opsearch, 55 (2), 447-477.
44. Gupta, B., & Gupta, R. (1983). Multi-criteria simplex method for a linear multiple objective transportation problem. Indian J. Pure Appl. Math., Vol. 14) (2), pp. 222- 232.
45. Hadley. G. (1972). Linear Programming, Addition-Wesley Publishing Company, Massachusetts.
46. Hammer, P. L. (1971). Communication on Bottleneck transportation problem”, Naval Research Logistics Quaterly, 18, 487-490.
47. Heinz, I. (1982). Solving the transportation problem with mixed constraints. Zeitschrift für Operations Research, 26 (1), 251-257.
48. Henriques, C. O., & Coelho, D. (2017). Multiobjective interval transportation problems: A short review. In Optimization and Decision Support Systems for Supply Chains, pages 99–116. Springer.
49. Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of Mathematics & Physics, 20, 224-230.
50. Hillier, F. S., & Lieberman, G. J. (2010). Introduction to Operations Research, ninth ed., New York: McGraw-Hill.
51. Hunwisai, D., & Kumam. P. (2017). A method for solving a fuzzy transportation problem via Robust ranking technique and ATM, Congent Mathematics, 4 (1), 1-11.
52. Imam, T., Elsharawy, G., Gomah, M., & Samy, I. (2009). Solving transportation problem using object-oriented model, International Journal of Computer Science and Network Security. 9 (2), 353-361.
53. Ilija Nikolic. (2007). Total Time Minimizing Transportation Problem, Yugoslav Journal of Operations Research 1, 125-133.
54. Isermann, H. (1979). The enumeration of all efficient solutions for a linear multi-objective transportation problem. Naval Res. Logist. Quart., 26, 123–139.
55. Jain, M., & Saksena, P. K. (2012). Time minimizing transportation problem with fractional bottleneck objective function, Yugoslav Journal of Operations Research 22, Number 1, 115-129.
56. Issermann, H. (1984). Linear bottleneck transportation problem, Asia Pacific Journal of Operational Research, 1, 1984, 38–52.
57. Jimenez, F., & Verdegay, J. L. (1996). Interval multiobjective solid transportation problem via genetic algorithms, Management of Uncertainty in Knowledge-Based Systems. 2, 787–792.
58. Jimenez, F., & Verdegay, J. L. (1998). Uncertain solid transportation problems, Fuzzy Sets and Systems. 100, 45–57.
59. Jimenez, F., & Verdegay, J. L. (1999). Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach, European Journal of Operational Research. 117, 485–510.
60. Kantorovich, L. V. (1939). "Mathematical Methods of Organizing and Planning Production" Management Science, Vol. 6, No. 4 (Jul., 1960), pp. 366–422.
61. Kasana, H. S. & Kumar, K. D. (2000). An efficient algorithm for multiobjective transportation problems. Asia pacific Journal of Operational Research, Vol. 7) (1), pp. 27- 40.
62. Kaur, L., Rakshit, M. & Singh, S. (2018). A New Approach to Solve Multi objective Transportation Problem. Applications and Applied Mathematics: An International Journal, Vol. 13, Issue 1 (June 2018), pp. 150–159.
63. Kaur, A., & A. Kumar. (2011). A new method for solving fuzzy transportation problems using ranking function, Applied Mathematics, Modelling, 5652-5661 (2011).
64. Kaur, A., & Kumar, A. (2012). A new method for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers, Applied Soft computing, 12, 1201–1213.
65. Khurana, A., & Arora, S. R. (2011). Solving transshipment problems with mixed constraints. International Journal of Management Science and Engineering Management, 6 (4), 292-297.
66. Klibi. W. F., Lasalle, A., & Ichoua. S. (2010). The stochastic multiperiod location transportation problem, Transportation Science, 44, 2010, 221-237.
67. Kirca, O., & Satir, A. (1990). A heuristic for obtaining an initial solution for the transportation problem, Journal of Operational Research Society. 41 (9), 865-871.
68. Kleinschmidt & Schannath, H. (1995). A strongly polynomial algorithm for the transportation problem, Mathematical Programming. 68, 1-13.
69. Klingman, D., & Russell R. (1974). The transportation problem with mixed constraints. Journal of the Operational Research Society, 25 (3) 447-455.
70. Korukoğlu, S., & Balli, S. (2011). An Improved Vogel’s approximation method for the transportation problem, Mathematical and computational Applications. 16 (2), 370-381.
71. Kowalski, K., Lev, B., Shen, W., & Tu, Y. (2014). A fast and simple branching algorithm for solving small scale fixed-charge transportation problem, Operation Research Perspectives. 1, 1-5.
72. Koopmans, T. C. (1949). Optimum utilization of the transportation system. Econometrica. Journal of the Econometric Society, 136-146.
73. Krzysztof Goczyla., & Janusz Cielatkowski. (1995). Case study Optimal routing in a transportation network, European Journal of Operational Res, 87, 214-222.
74. Kulkarni, S. S., & Datar, H. G. (2010). On solution to modified unbalanced transportation problem, Bulletin of the Marathwada Mathematical Society. 11 (2), 20-26.
75. Kumar, P. S. (2016). A Simple Method for Solving Type-2 andType-4 Fuzzy Transportation Problems, International Journal of Fuzzy Logic and Intelligent Systems. 16, (4), 225-237.
76. Lee, S. M., & Moore, L. J. (1973). Optimizing transportation problems with multiple objectives. AIEE Transactions, Vol. 5, pp. 333-338.
77. Liu, S. T. (2003). The total cost bounds of the transportation problem with varying demand and supply, Omega. 31, 247-251.
78. Liu, S. T., & Kao, C. (2004). Solving fuzzy transportation problems based on extension principle, European Journal of Operational Research. 153 (3), 661–674.
79. Li, Y., Ida, K., Gen, M., & Kobuchi, R. (1997). Neural network approach for multicriteria solid transportation problem, Computers and Industrial Engineering. 33 (3-4), 465–468.
80. Mathirajan, M., & Meenakshi, B. (2004). Experimental analysis of some variants of Vogel’s approximation method, Asia-Pacific Journal of Operational research. 21 (4), 447-462.
81. Mondal, R. N., Rashid, F., Shaha, P., & Roy, R. (2015). An Innovative Method for Unraveling Transportation Problems with Mixed Constraints. American Journal of Mathematics and Statistics, 5 (4) 190-195.
82. Monge. G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de l’ Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pages 666–704.
83. Nagarajan, A., Jeyaraman, K., & Prabha, S. (2014). Multi objective solid transportation problem with interval cost in source and demand parameters. International Journal of Computer & Organization Trends, 8 (1): 33–41.
84. Natarajan, P. P. G. (2010). A new method for finding an optimal solution of fully interval integer transportation problems. Applied Mathematical Sciences, 4 (37): 1819–1830.
85. Neumann, J. V. & Morgenstern, O. (1944). Theory of Games and Economic Behavior, Princeton University Press.
86. Okunbor, D. (2004). Management decision-making for transportation problems through goal programming, J of Academy of Business and Econ., 4, 109-117.
87. Panda, A., & Das, C. B. (2013). Cost varying interval transportation problem under two vehicles. Journal of New Results in Science, 2 (3): 19–37.
88. Pandian. P. (2017). Solving Transportation problem with mixed constraints in Rough Environment”, In. J. of Pure and Applied Math.
89. Pandian, P., & Anuradha, D. (2011). Solving interval transportation problems with additional impurity constraints. Journal of Physical Sciences, 15: 103–112.
90. Pandian, P., & Natarajan, G. (2010). “Fourier Method for Solving Transportation Problems with Mixed Constraints”, Int. J. Contemp. Math. Sciences, Vol. 5, No. 28, pp. 1385-1395.
91. Pandian, P., & Natarajan, G. (2010). A New Approach for solving Transportation Problems with Mixed Constraints, Journal of Physical Sciences, Vol. 14, pp. 53 –61.
92. Pandian, P., & Natarajan G. (2010). A New method for finding an optimal solution of fully interval integer transportation problems, Applied Mathematical Sciences, volume 4 (37), pages 1819-1830.
93. Pandian, P., & Anuradha, D. (2011). A new method for solving bi-objective transportation problem. Aust. J. Basic & Appl. Sci., Vol. 10, pp. 67-74.
94. Pandian, P., & Natarajan, G. (2010). A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems, Applied Mathematical Sciences. 4 (2), 79-90.
95. Pandian, P., & Natarajan, G. (2011). A New Method for Solving Bottleneck-Cost Transportation Problems, International Mathematical Forum. 6 (10), 451 –460.
96. Pandian, P., & Natarajan, G. (2010). An Optimal More-for-Less Solution to Fuzzy Transportation Problems with Mixed Constraints, Applied Mathematical Sciences, Vol. 4, No. 29, pp. 1405-1415.
97. Pandian, P., & Natarajan, G. (2010). A New Method for Finding an Optimal More-For-Less Solution of Transportation Problems with Mixed Constraints”, Int. J. Contemp. Math. Sciences, Vol. 5, No. 19, pp. 931-942.
98. Pargar, F., Javadian, N., & Ganji, A. P. (2009). A heuristic for obtaining an initial solution for the transportation problem with experimental analysis. The 6th International Industrial Engineering Conference, Sharif University of Technology, Tehran, Iran.
99. Peerayuth Charnsethikul & SaereeSvetasreni. (2007). The Constrained Bottleneck Transportation Problem, Journal of Mathematics and Statistics, 3, 2007, 24-27.
100. Pradipkundu, Samarjitkar & Manoranjanmaiti. (2013). Some Solid transportation model withcrisp and rough costs In. J. of mathematical and computational sciences, 2013, vol -7.
101. Putcha. C. S., & Shekaramiz. A. (2009). Development of a new method for arriving at initial basic feasible solution for optimization problems in Engineering, 23rd European Conference on Operational Research, Bonn.
102. Purushothkumar, M. K., Ananathanarayanan, M., & Dhanasekar, S. (2018). A Diagonal optimal algorithm to solve Interval Integer Transportation problems, International Journal of Applied Engineering Research, 2018, volume 13 (18), pages 13702-13704.
103. Rabindra Nath Mondal, et al., (2012). Solving Transportation Problem with Mixed Constraints, IJMBS, Vol. 2, ISS ue 1.
104. Rajarajeswari, P., & Maheswari, D. (2020). Solving Integer Interval Transportation Problem with Mixed Constraints. IOSR Journal of Mathematics, 2020, 16 (3), 35-39.
105. Ramadan, S. Z. & Ramadan, I. Z. (2012). Hybrid two-stage algorithm for solving transportation problem, Modern Applied Science. 6 (4) (2012) 12-22.
106. Ramadoss, S. K., Singh, A. P., & Mohiddin, I. K. G. (2014). An evolutionary heuristic algorithm for the assignment problem, Opsearch. 51 (4) (2014) 589-602.
107. Ramesh, G, & Ganesh, K. Interval Linear Programming with generalized interval arithmetic, International Journal of Scientific & Engineering Research, 2011.
108. Ravi Varadarajan. (1991). An optimal algorithm for 2 x n bottleneck transportation problems, Operations Research Letters, 10, 525-529.
109. Reinfeld, N. V., & Vogel, W. R. (1958). Mathematical Programming, Englewood Cliffs, New Jersey: prentice-Hall, 1958, pp. 59-70.
110. Reeves, G. R., & Franz, L. S. (1985). A simplified interactive multiple objective linear programming procedure. Computational and Operations Research, Vol. 12 (6), pp. 589-601.
111. Roy, S. K., & Mahapatra, D. R. (2011). Multi-Objective Interval-Valued Transportation Probabilistic Problem Involving Log-Normal, International Journal of Mathematics and Scientific Computing,, Vol. 1, No. 2.
112. Rommelfranger, H., Wolf, J., & Hanuschek, R. (1989). Linear programming with fuzzy coefficients, Fuzzy sets and systems, 29, 195-206.
113. Safi, M. R., & Razmjoo, A. (2013). Solving Fixed Charge Transportation Problem with Interval Parameters, Applied Mathematical Modeling, volume 37 (18–19), pages 8341–8347.
114. Samuel, A. E. (2012). Improved zero point method (IZPM) for the transportation problems, Applied Mathematical Sciences. 6 (109), 5421-5426.
115. Samuel, A. E., & Raja, P. (2016). A New Approach for Solving Unbalanced Fuzzy Transportation Problems, International Journal of Computing and Optimization, 3 (1), 131-140.
116. Samuel, A. E. & Venkatachalapthy, M. (2013). IZPM For Unbalanced Fuzzy Transportation Problems, International Journal of Pure and Applied Mathematics, 86 (4), 689-700.
117. Schrenk, S., Finke, G., & Cung, V. D. (2011). Two classical transportation problems revisited: Pure constant fixed charges and the paradox, Mathematical and Computer Modeling. 54, 2306-2315.
118. Sengupta, A., & Pal, T. K.. (2003). Interval-valued transportation problem with multiple penalty factors, VU Journal of Physical Sciences, 2003, volume 9, pages 71-81.
119. Sengupta, A., & Kumar Pal, T. (2000). Theory and Methodology: On comparing interval numbers, European Journal of Operational Research, 27, 28-43.
120. Sen, N, Som, T.,& Sinha, B. (2010). A study of transportation problem for an essential item of southern part of north eastern region of India as an OR model and use of object oriented programming, International Journal of Computer Science and Network Security. 10 (4), 78-86.
121. Seshan, C. R., & Tikekar, V. G. (1980). On Sharma-Swarup algorithm for time minimizing transportation problems”, Proc. Indian Acad. Sci., 89 (2), 101−102.
122. Sharma, R. R. K. & Prasad, S. (2003). Obtaining a good primal solution to the uncapacitated transportation problem, European Journal of Operational Research. 144, 560-564.
123. Sharma, R. R. K., & Sharma, K. D. (2000). A new dual based procedure for the transportation problem, European Journal of Operational Research. 122 (3), 611-624.
124. Sharma, A., Verma, V., Kaur, P., & Dahiya, K. (2015). An iterative Algorithm for two level time hierarchical time minimization transportation problem”, European Journal of Operational Research, 246, 700-707.
125. Shimshak, D. G., Kaslik, J. A., & Barclay, T. D. (1981). A modification of Vogel’s approximation method through the use of heuristic, Infor. 19, 259–263.
126. Singh, S., Dubey, G. C., & Shrivastava R. (2012). Optimization and analysis of some variants through Vogel’s approximation method (VAM). IOSR Journal of Engineering 2 (9), 20-30.
127. Sobha, K. R. (2014). Profit Maximization of Unbalanced Fuzzy Transportation Problem, International jurnal of Science and Research, 3 (11).
128. Sonia, Puri, M. C. (2004). Two Level Hierarchical time minimizing transportation Problem, TOP, 12 (2), 301-330.
129. Srinivasan, V., & Thompson, G. L. (1977). Cost Operator Algorithms for the Transportation Problem, Mathematical Programming. 12, 372-391.
130. Srinivas, B., & Ganesan, G. (2013). Optimal Solution for Degeneracy Fuzzy Transportation Problem Using Zero Termination and Robust Ranking Methods, International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value.
131. Sudhakar, V. J., Arunsankar, N., & Karpagam, T. (2012). A new approach for finding an optimal solution for transportation problems, European Journal of Scientific Research. 68 (2) (2012) 254-257.
132. Szwarc, W. (1966). The Time Transportation Problem, Zastosowania Matematyki., 8, 231-242.
133. Sultan, A., & Goyal, S. K. (1988). Resolution of Degeneracy in Transportation Problems, Journal Operational Research Society, 39, 411-413.
134. Taha H. A. (2006). Operation Research: An introduction, 8th ed., Prentice-Hall of India.
135. Tanaka, H., & Asai, K. (1984). A formulation of fuzzy linear programming based on comparison of fuzzy numbers, Control and Cybernetics, 13, 185-194.
136. Tkacenko. A., & Alhazov., A. (2001). The multiobjective bottleneck transportation problem, Computers Science Journal of Moldova, Kishinev, 9, 321-335.
137. Uddin, M. S. (2012). Transportation time minimization: An algorithmic approach. Journal of Physical Sciences, 16, 59–64.
138. Ummey Habiba, & Abdul Quddoos. (2020). A New Method to Solve Interval Transportation Problems, Pak. j. stat. oper. res. Vol. 16 No. 4 2020 pp 802-811.
139. Vancroonenburg, W., Croce, F. D., Goossens, D., & Spieksma, F. C. R.. (2014). The Red–Blue transportation problem, European Journal of Operational Research. 237, 814–823.
140. Vasko, F. J., & Storozhyshina, N. (2011). Balancing a transportation problem: OR Insight. 24 (3), 205-214.
141. Wakas, S. K. (2014). Solving Fuzzy Transportation Problems using a New Algorithm, Journal of Applied Sciences, 14, 252-258.
142. Winston, W. L. (2004). Operations Research: Applications and Algorithms, Belmont, CA: Thomson.
143. Zangiabadi, M., & Rabie, T. (2012). A New Model for Transportation Problem with Qualitative Data, Iranian Journal of Operations Research. 3 (2), 33-46.
144. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338-353.
145. Zeleny, M. (1974). Linear multiobjective programming. Springer-Verlag, Berlin.
146. Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst., 1, 45-55.