Access to safe drinking water remains a critical challenge in coastal West African urban centers, particularly in resource-limited settings such as Fresco, Côte d'Ivoire. This study evaluates the potabilization potential of the Bolo and Niouniourou rivers to inform sustainable water supply strategies in hydrogeologically complex estuarine environments. Water samples were collected from 20 stations during the peak flood period (July 2025) and analyzed for 24 physico-chemical parameters. Results revealed contrasting hydrochemical patterns between the two rivers driven by differential hydrodynamic forcing. The Bolo River maintained a freshwater facies (mean conductivity: 1,141µS/cm; dissolved oxygen: 6.28mg/L) under fluvial dominance, where high flood discharge effectively repelled saltwater intrusion through hydraulic flushing mechanisms. Conversely, the Niouniourou River exhibited severe mineralization (conductivity: 3,308µS/cm; chlorides: 912mg/L), attributable to tidal inertia and saltwater trapping that persists despite elevated discharge during the monsoon season. Compliance assessment against WHO drinking water guidelines confirmed the Bolo River's suitability for conventional treatment pathways, whereas the Niouniourou River's chronic salinity burden renders it unsuitable for potabilization without prohibitively expensive desalination technologies. These findings underscore the fundamental importance of hydrodynamic forcing in governing coastal water resource quality and accessibility. The study demonstrates that site-specific hydrodynamic assessment is essential for evidence-based water supply planning in estuarine contexts.
| Published in | Journal of Water Resources and Ocean Science (Volume 15, Issue 1) |
| DOI | 10.11648/j.wros.20261501.12 |
| Page(s) | 8-15 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2026. Published by Science Publishing Group |
Drinking Water Supply, Hydrochemistry, Physicochemical Parameters, River Bolo, River Niouniourou, Fresco (Côte d'Ivoire), Coastal Water Potabilization
Min | Max | Average | SD | Median | CV | IC 95% | Skewness | P95 | |
|---|---|---|---|---|---|---|---|---|---|
pH | 5,7 | 7,82 | 6,9 | 0,68 | 6,95 | 9,8 | [6,53; 7,27] | -0,564 | 7,73 |
Cond | 216 | 3480 | 1355,62 | 917,01 | 1212 | 67,6 | [801,47; 1909,76] | 0,977 | 2982 |
TDS | 196 | 3450 | 1138,5 | 936,62 | 1090 | 82,3 | [639,41; 1637,59] | 1,047 | 2850 |
NTU | 1,5 | 27,6 | 9,28 | 6,19 | 7,64 | 66,7 | [5,54; 13,02] | 2,04 | 18,84 |
Temp | 27,9 | 29,5 | 28,59 | 0,48 | 28,7 | 1,7 | [28,30; 28,88] | 0,148 | 29,26 |
ORP | -81 | 40,1 | -29,73 | 37,62 | -37,55 | -126,5 | [-49,78; -9,69] | 0,669 | 36,2 |
DO | 5,59 | 6,71 | 6,28 | 0,28 | 6,31 | 4,5 | [6,13; 6,43] | -1,014 | 6,65 |
Res | 0,28 | 0,75 | 0,46 | 0,16 | 0,43 | 35,5 | [0,36; 0,56] | 0,708 | 0,74 |
Sal | 0 | 1,8 | 0,58 | 0,53 | 0,5 | 90,4 | [0,30; 0,86] | 0,951 | 1,5 |
% Sat | 71,2 | 87,4 | 80,78 | 3,88 | 81,3 | 4,8 | [78,71; 82,84] | -0,786 | 86,42 |
MES | 1 | 35 | 14,31 | 11,86 | 10,5 | 82,9 | [7,99; 20,63] | 0,544 | 33,5 |
Ca2+ | 6,4 | 24,4 | 14,862 | 4,885 | 14,8 | 32,9 | [11,91; 17,81] | 0,534 | 23,68 |
Mg2+ | 3,2 | 62,8 | 22,615 | 16,437 | 18,8 | 72,7 | [12,68; 32,55] | 1,216 | 50,62 |
Na+ | 8,5 | 144,3 | 57,462 | 38,842 | 49,1 | 67,6 | [33,99; 80,93] | 1,046 | 129,18 |
K+ | 1,6 | 26,6 | 10,615 | 7,155 | 9,1 | 67,4 | [6,29; 14,94] | 1,045 | 23,84 |
HCO3- | 28 | 36,6 | 33,224 | 2,506 | 33,52 | 7,5 | [31,889; 34,559] | -0,82 | 36,6 |
Cl- | 34 | 888 | 293,938 | 249,279 | 266,5 | 84,8 | [161,106; 426,769] | 1,06 | 771,75 |
SO₄²⁻ | 0 | 138 | 41,438 | 40,405 | 38 | 97,5 | [19,907; 62,968] | 1,372 | 131,25 |
BOD₅ | 1,5 | 4,4 | 2,95 | 0,89 | 2,95 | 30,2 | [2,48; 3,42] | -0,025 | 4,25 |
COD | 4 | 11 | 7,19 | 2,17 | 7 | 30,1 | [6,03; 8,34] | 0,157 | 10,25 |
PO₄³⁻ | 0,12 | 0,63 | 0,306 | 0,121 | 0,285 | 39,5 | [0,241; 0,370] | 1,26 | 0,51 |
Min | Max | Average | SD | Median | CV | IC 95% | Skewness | P95 | |
|---|---|---|---|---|---|---|---|---|---|
pH | 6,5 | 7,42 | 6,76 | 0,44 | 6,56 | 6,52 | [6.33; 7.19] | 1,14 | 7,29 |
Cond | 2420 | 3760 | 3307,5 | 610,54 | 3525 | 18,46 | [2709.17; 3905.83] | -0,96 | 3743,5 |
TDS | 2420 | 3760 | 3300 | 609,21 | 3510 | 18,46 | [2702.98; 3897.02] | -0,92 | 3743,5 |
NTU | 12,8 | 20,3 | 15,575 | 3,26 | 14,6 | 20,95 | [12.38; 18.77] | 0,91 | 19,46 |
Temp | 27,3 | 28,3 | 27,875 | 0,42 | 27,95 | 1,50 | [27.46; 28.29] | -0,58 | 28,25 |
ORP | -58,3 | -6,7 | -21,075 | 24,86 | -9,65 | -117,97 | [-45.44; 3.29] | -1,14 | -7,03 |
DO | 4,26 | 6,67 | 5,0925 | 1,08 | 4,72 | 21,24 | [4.03; 6.15] | 0,97 | 6,40 |
CE | 333 | 3730 | 2348,25 | 1434,52 | 2665 | 61,09 | [942.42; 3754.08] | -0,71 | 3575,5 |
Res | 269 | 382 | 305 | 53,19 | 284,5 | 17,44 | [252.88; 357.12] | 0,94 | 369,55 |
Sal | 1,3 | 1,9 | 1,7 | 0,28 | 1,8 | 16,64 | [1.42; 1.98] | -0,82 | 1,9 |
% Sat | 53,7 | 82,6 | 63,475 | 12,99 | 58,8 | 20,46 | [50.75; 76.20] | 1,03 | 79,13 |
MES | 7 | 33 | 15,25 | 12,12 | 10,5 | 79,48 | [3.37; 27.13] | 1,00 | 30 |
NO3- | 1,9 | 3,8 | 2,5 | 0,88 | 2,15 | 35,02 | [1.64; 3.36] | 1,08 | 3,56 |
NO2- | 0,108 | 0,136 | 0,122 | 0,01 | 0,122 | 10,19 | [0.11; 0.13] | 0,00 | 0,13 |
NH3 | 0,54 | 0,68 | 0,61 | 0,06 | 0,61 | 10,19 | [0.55; 0.67] | 0,00 | 0,67 |
Ca2+ | 20 | 31,2 | 26,9 | 4,82 | 28,2 | 17,90 | [22.18; 31.62] | -0,84 | 30,78 |
Mg2+ | 45,7 | 70,1 | 59,775 | 11,06 | 61,65 | 18,50 | [48.94; 70.61] | -0,39 | 69,62 |
HCO3- | 30,5 | 36,6 | 32,94 | 2,99 | 32,33 | 9,07 | [30.01; 35.87] | 0,31 | 36,23 |
Cl- | 667 | 1022 | 912,25 | 166,39 | 980 | 18,24 | [749.19; 1075.31] | -1,04 | 1020,05 |
Na+ | 108,4 | 166,1 | 148,25 | 27,04 | 159,25 | 18,24 | [121.75; 174.75] | -1,04 | 165,78 |
K+ | 20 | 30,7 | 27,375 | 5,01 | 29,4 | 18,30 | [22.47; 32.28] | -1,03 | 30,64 |
SO₄²⁻ | 66 | 101 | 86,5 | 16,62 | 89,5 | 19,22 | [70.21; 102.79] | -0,33 | 100,7 |
DCO | 4 | 8 | 6,25 | 1,71 | 6,5 | 27,33 | [4.58; 7.92] | -0,43 | 7,85 |
DBO5 | 1,2 | 4,3 | 2,925 | 1,44 | 3,1 | 49,18 | [1.52; 4.33] | -0,24 | 4,24 |
SODECI | Water Distribution Company of Côte D’Ivoire |
| [1] | OECD. Water Governance in African Cities. Studies on Water, OECD Publishing, Paris. 2021, 113 p. |
| [2] | Ocean & Climate Platform. Adapting Coastal Cities and Territories to Sea Level Rise in West Africa: Challenges and Leading. Practices. 2023, 60 p. |
| [3] | Olusegun A. D., Rafael A., Pierre M., Erwin W. J., Donatus B. A. And Philip S. J. M.. Future socioeconomic development along the West African coast forms a larger hazard than sea level rise. Commun Earth Environ. 2023, 4, 150. |
| [4] | Brou, F. N. Recurrent Drinking Water Shortage Worries Residents and Local Authorities in Fresco. Society Article. Côte d’Ivoire-AIP. November 14, 2024. |
| [5] | ONEP. Project to Strengthen the Drinking Water Supply System of the City of Fresco from Surface Water. Preliminary Project Summary Report (PPS). 2024, 9 p. |
| [6] | Wu, J., Xu, N., Wang, Y., Zhang W., Borthwick G. L. Ni Jinren. Global syndromes induced by changes in solutes of the world’s large rivers. Nat Commun 12, 5940. 2021. |
| [7] | Mikhailov V. & Isupova M. Hypersalinization of river estuaries in West Africa. Water Resources. 2008. 35.367-385. |
| [8] | Egnankou W. M. Rehabilitation of Mangroves between Fresco and Grand-Lahou in Côte d'Ivoire: Important Zones for Fishing. FAO Regional Office for Africa. Nature and Fauna. 2004, Vol. 24, No. 1, 85–92. |
| [9] | Berron H. The Lagoonal Coastal Zone of Côte d'Ivoire: Physical Environment, Settlement and Anthropogenic Modifications. Cahiers d'Outre-Mer. 1991, No. 176, Vol. 44, October–December 1991, 345–363. |
| [10] | Le Loeuff, P., Marchal, E. Coastal Geography. In: Environment and Aquatic Resources of Côte d'Ivoire: The Marine Environment; ORSTOM: 1993, 15–22. |
| [11] | AFNOR. AFNOR – NF EN 25667-2 (T 90-512). Water Quality. Sampling. Part 2: General Guidance on Sampling Techniques. 1993, 10 p. |
| [12] | Loire-Bretagne Water Agency. Water Sampling in Rivers: Sampling Techniques for Physico-Chemical Analysis. Technical Guide. 2006, 134 p. |
| [13] | Okeke P. A, Ohaturuonye SO, Amachree D, Nwosu PO, Obodoaku CA. Studies on the Physicochemical Properties and Heavy Metals Concentration in Water and Sediment of Ezu River, Awka North Local Government Area of Anambra State, Nigeria. Adv in Hydro and Meteorol. 2025, 2(4), 8 p. |
| [14] | Inez N. N., Prasanna M. V. Assessment onurban lakes along the coastal region of Miri, NW Borneo: implication for hydrochemistry, water quality, and pollution risk. Environmental Science and Pollution Research. 2024. 31. 41306 – 41328. |
| [15] | Zakaryae K., Bouchra O., Mounia T., Mohammed T., Rachida H., Hinde C. D. Characterization of the physico-chemical parameters of the surface water in Al-Hoceima Bay, Morocco. E3S Web of Conferences 502, 02001. 2024, 4 p. |
| [16] | Matunguru J. M., Okito, G. M., Lubembe S., Uvon, J. J., Lutili, F., Mashimango, J.-J. B., Sibomana, C., Mbalassa, M., Lina, A., Muderhwa, V. N., Micha, J.-C., Ntakimazi, G. Assessment of Physicochemical Parameters in Relation with Ecology of Bagrus bayad (Fabricius, 1775, Bagridae) in Lake Albert, Ituri, Democratic Republic of the Congo (DRC). Open Access Library Journal. 2022, 9. 1-18. |
| [17] | Ashrafuzzaman M, Artemi C, Santos Fd, Schmidt L. Current and Future Salinity Intrusion in the South-Western Coastal Region of Bangladesh. Span. J. Soil Sci. 2022, 12: 10017. |
| [18] | Callistus, O., Daniel, A. D., Pelumi, A. O., Somtobe, O., Kunle, O., Echezona, O. S., Chinenye, O. J. An Assessment of Saltwater Intrusion in Coastal Regions of Lagos, Nigeria. Journal of Geoscience and Environment Protection. 2024, 12. 93-119. |
APA Style
Martial, K. N., Gbombele, S., Nagnin, S. (2026). Assessment of the Physico-chemical Quality of Surface Water in the Bolo and Niouniourou Rivers for Drinking Water Supply in the City of Fresco, Côte d’Ivoire. Journal of Water Resources and Ocean Science, 15(1), 8-15. https://doi.org/10.11648/j.wros.20261501.12
ACS Style
Martial, K. N.; Gbombele, S.; Nagnin, S. Assessment of the Physico-chemical Quality of Surface Water in the Bolo and Niouniourou Rivers for Drinking Water Supply in the City of Fresco, Côte d’Ivoire. J. Water Resour. Ocean Sci. 2026, 15(1), 8-15. doi: 10.11648/j.wros.20261501.12
@article{10.11648/j.wros.20261501.12,
author = {Koffi N'guessan Martial and Soro Gbombele and Soro Nagnin},
title = {Assessment of the Physico-chemical Quality of Surface Water in the Bolo and Niouniourou Rivers for Drinking Water Supply in the City of Fresco, Côte d’Ivoire},
journal = {Journal of Water Resources and Ocean Science},
volume = {15},
number = {1},
pages = {8-15},
doi = {10.11648/j.wros.20261501.12},
url = {https://doi.org/10.11648/j.wros.20261501.12},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wros.20261501.12},
abstract = {Access to safe drinking water remains a critical challenge in coastal West African urban centers, particularly in resource-limited settings such as Fresco, Côte d'Ivoire. This study evaluates the potabilization potential of the Bolo and Niouniourou rivers to inform sustainable water supply strategies in hydrogeologically complex estuarine environments. Water samples were collected from 20 stations during the peak flood period (July 2025) and analyzed for 24 physico-chemical parameters. Results revealed contrasting hydrochemical patterns between the two rivers driven by differential hydrodynamic forcing. The Bolo River maintained a freshwater facies (mean conductivity: 1,141µS/cm; dissolved oxygen: 6.28mg/L) under fluvial dominance, where high flood discharge effectively repelled saltwater intrusion through hydraulic flushing mechanisms. Conversely, the Niouniourou River exhibited severe mineralization (conductivity: 3,308µS/cm; chlorides: 912mg/L), attributable to tidal inertia and saltwater trapping that persists despite elevated discharge during the monsoon season. Compliance assessment against WHO drinking water guidelines confirmed the Bolo River's suitability for conventional treatment pathways, whereas the Niouniourou River's chronic salinity burden renders it unsuitable for potabilization without prohibitively expensive desalination technologies. These findings underscore the fundamental importance of hydrodynamic forcing in governing coastal water resource quality and accessibility. The study demonstrates that site-specific hydrodynamic assessment is essential for evidence-based water supply planning in estuarine contexts.},
year = {2026}
}
TY - JOUR T1 - Assessment of the Physico-chemical Quality of Surface Water in the Bolo and Niouniourou Rivers for Drinking Water Supply in the City of Fresco, Côte d’Ivoire AU - Koffi N'guessan Martial AU - Soro Gbombele AU - Soro Nagnin Y1 - 2026/01/26 PY - 2026 N1 - https://doi.org/10.11648/j.wros.20261501.12 DO - 10.11648/j.wros.20261501.12 T2 - Journal of Water Resources and Ocean Science JF - Journal of Water Resources and Ocean Science JO - Journal of Water Resources and Ocean Science SP - 8 EP - 15 PB - Science Publishing Group SN - 2328-7993 UR - https://doi.org/10.11648/j.wros.20261501.12 AB - Access to safe drinking water remains a critical challenge in coastal West African urban centers, particularly in resource-limited settings such as Fresco, Côte d'Ivoire. This study evaluates the potabilization potential of the Bolo and Niouniourou rivers to inform sustainable water supply strategies in hydrogeologically complex estuarine environments. Water samples were collected from 20 stations during the peak flood period (July 2025) and analyzed for 24 physico-chemical parameters. Results revealed contrasting hydrochemical patterns between the two rivers driven by differential hydrodynamic forcing. The Bolo River maintained a freshwater facies (mean conductivity: 1,141µS/cm; dissolved oxygen: 6.28mg/L) under fluvial dominance, where high flood discharge effectively repelled saltwater intrusion through hydraulic flushing mechanisms. Conversely, the Niouniourou River exhibited severe mineralization (conductivity: 3,308µS/cm; chlorides: 912mg/L), attributable to tidal inertia and saltwater trapping that persists despite elevated discharge during the monsoon season. Compliance assessment against WHO drinking water guidelines confirmed the Bolo River's suitability for conventional treatment pathways, whereas the Niouniourou River's chronic salinity burden renders it unsuitable for potabilization without prohibitively expensive desalination technologies. These findings underscore the fundamental importance of hydrodynamic forcing in governing coastal water resource quality and accessibility. The study demonstrates that site-specific hydrodynamic assessment is essential for evidence-based water supply planning in estuarine contexts. VL - 15 IS - 1 ER -