This paper presents a review that summarises research conducted over the past few decades on enhancing acrylic denture base resin, specifically focusing on the effects of fibre, filler, and nanofiller additions on the properties of poly (methyl methacrylate) (PMMA). The review incorporates scientific papers, abstracts, and studies published between 2015 and 2023, which explore the impact of additives, fibres, fillers, and reinforcement materials on PMMA. According to the reviewed studies, the addition of fillers, fibres, nanofillers, and hybrid reinforcement materials has been shown to enhance the properties of PMMA denture base material. However, it is important to note that most of these investigations were limited to in vitro experiments and did not thoroughly explore the bioactivity and clinical implications of the modified materials. Based on the findings of the review, it is concluded that there is no single ideal denture base material. However, the properties of PMMA can be improved through certain modifications, particularly the addition of silanised nanoparticles and the use of a hybrid reinforcement system. These modifications have shown promising results in enhancing the performance of PMMA as a denture base material.
Published in | International Journal of Biomedical Materials Research (Volume 13, Issue 2) |
DOI | 10.11648/j.ijbmr.20251302.11 |
Page(s) | 32-59 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
PMMA, Denture Base, Dental Materials, Fibres Reinforcement, Polymer Composites, Reinforcement Fillers, Nanoparticles, Hybrid Reinforcement
Type | Class | Description |
---|---|---|
1 | 1 | Heat-processing polymers, liquid and powder |
1 | 2 | Heat-processed (plastic cake) |
2 | 1 | Auto polymerization polymers, powder, and liquid |
2 | 2 | Auto polymerization powder, powder, and liquid |
3 | - | Thermoplastic powder or blank |
4 | - | Light-activated materials |
5 | - | Microwave-cured materials |
Hybrid type | Hybrid Materials |
---|---|
Fibers | Glass fibers with polyethylene fibers [163] |
Fillers | Al2O3 with ZrO2 , [123] ABWs with Al2O3 , [27] ZrO2 with TiO2 [135] Al2O3 with plasma [27] |
Fibers with Fillers | nHA and glass fiber [185] PMMA with ZrO2 and glass fiber [140] PMMA with nHA and Kevlar fiber [186] PMMA with ZrO2 and Kevlar [95] |
[1] | Shen, C., Rawls, H. R., & Esquivel-Upshaw, J. F. (Eds.). (2021). Phillips' Science of Dental Materials E-Book. Elsevier Health Sciences. |
[2] | Sreenivasalu, P. K. P., Dora, C. P., Swami, R., Jasthi, V. C., Shiroorkar, P. N., Nagaraja, S.,... & Anwer, M. K. (2022). Nanomaterials in Dentistry: Current Applications and Future Scope. Nanomaterials, 12(10), 1676. |
[3] | Wang, D., Wang, Y., Tian, W., & Pan, J. (2019). Advances of tooth‐derived stem cells in neural diseases treatments and nerve tissue regeneration. Cell Proliferation, 52(3), e12572. |
[4] | Han, B., Chen, C., Wei, J., Ding, J., & Yu, T. (2023). Advanced materials for the restoration and reconstruction of dental functions, volume II. Frontiers in Bioengineering and Biotechnology, 11, 1144275. |
[5] | Bhargav, A., Sanjairaj, V., Rosa, V., Feng, L. W., & Fuh YH, J. (2018). Applications of additive manufacturing in dentistry: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(5), 2058-2064. |
[6] | Coffman, C., Visser, C., Soukup, J., & Peak, M. (2019). Crowns and prosthodontics. Wiggs's Veterinary Dentistry: Principles and Practice, 387-410. |
[7] | Saeed, F., Muhammad, N., Khan, A. S., Sharif, F., Rahim, A., Ahmad, P., & Irfan, M. (2020). Prosthodontics dental materials: From conventional to unconventional. Materials Science and Engineering: C, 106, 110167. |
[8] | Kumar, S., & Bhowmik, S. (2022). Potential use of natural fiber-reinforced polymer biocomposites in knee prostheses: a review on fair inclusion in amputees. Iranian Polymer Journal, 31(10), 1297-1319. |
[9] | Alharbi, N. A. B. (2020). Physico mechanical Characterisation of a Novel and Commercial CAD/CAM Composite Blocks. The University of Manchester (United Kingdom). |
[10] | Merheb, J. (2018). Jaw bone characteristics and their influence on dental implant therapy outcome. Doctor in the Biomedical Sciences, Lebanese university in Beirut. |
[11] | Milutinović, M., Lendjel, R., Baloš, S., Zlatanović, D. L., Sevšek, L., & Pepelnjak, T. (2021). Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. Journal of Materials Research and Technology, 10, 605-623. |
[12] | Kaur, G., Kaushal, R., & Prabhakar, D. (2021). Esthetic Restorations and Smile Designing: A Review. International Journal of Health Sciences, 10-22. |
[13] | Bacali, C., Baldea, I., Moldovan, M., Carpa, R., Olteanu, D. E., Filip, G. A.,... & Badea, F. (2020). Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clinical Oral Investigations, 24, 2713-2725. |
[14] | Takaichi, A., Fueki, K., Murakami, N., Ueno, T., Inamochi, Y., Wada, J.,... & Wakabayashi, N. (2022). A systematic review of digital removable partial dentures. Part II: CAD/CAM framework, artificial teeth, and denture base. Journal of Prosthodontic Research, 66(1), 53-67. |
[15] | Dean, J. A. (Ed.). (2021). McDonald and Avery's dentistry for the child and adolescent-E-book. Elsevier Health Sciences. |
[16] | Thayer, M. L., & Ali, R. (2022). The dental demolition derby: bruxism and its impact-part 3: repair and reconstruction. British Dental Journal, 232(11), 775-782. |
[17] | Jo, Y. H., Lee, W. J., Lee, J. H., & Yoon, H. I. (2022). Antifungal activity, mechanical properties, and accuracy of three-dimensionally printed denture base with microencapsulated phytochemicals on varying post-polymerization time. BMC Oral Health, 22(1), 611. |
[18] | Ahmed, S., Sameen, D. E., Lu, R., Li, R., Dai, J., Qin, W., & Liu, Y. (2022). Research progress on antimicrobial materials for food packaging. Critical Reviews in Food Science and Nutrition, 62(11), 3088-3102. |
[19] | Alhamdan, E. M. (2023). Influence of Contemporary Photoactivated Disinfection on the Mechanical Properties and Antimicrobial Activity of PMMA Denture Base: A Systematic Review and Meta Analysis. Photodiagnosis and Photodynamic Therapy, 103523. |
[20] | Selvaraj, S. K., Prasad, S. K., Yasin, S. Y., Subhash, U. S., Verma, P. S., Manikandan, M., & Dev, S. J. (2022). Additive manufacturing of dental material parts via laser melting deposition: A review, technical issues, and future research directions. Journal of Manufacturing Processes, 76, 67-78. |
[21] | Samir, A., Ashour, F. H., Hakim, A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation, 6(1), 68. |
[22] | Kurniasari, N. M. W., Trisanti, P. N., Hernugrahanto, K. D., Ferdiansyah, F., & Sumarno, S. (2023, June). Synthesis and purification process of PMMA by suspension polymerization for bone cement material. In AIP Conference Proceedings (Vol. 2703, No. 1). AIP Publishing. |
[23] | Lacina, D., Neel, C., & Dattelbaum, D. (2018). Shock response of poly [methyl methacrylate](PMMA) measured with embedded electromagnetic gauges. Journal of Applied Physics, 123(18), 185901. |
[24] | Saxena, P., & Shukla, P. (2022). A comparative analysis of the basic properties and applications of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA). Polymer Bulletin, 79(8), 5635-5665. |
[25] | Tsui, J. K., Bell, S., da Cruz, L., Dick, A. D., & Sagoo, M. S. (2022). Applications of three-dimensional printing in ophthalmology. Survey of Ophthalmology. |
[26] | Qin, J., Jiang, J., Tao, Y., Zhao, S., Zeng, W., Shi, Y.,... & Xiao, M. (2021). Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: A review. Polymer Testing, 93, 106940. |
[27] | Ali Sabri, B., Satgunam, M., Abreeza, N. M., & N. Abed, A. (2021). A review on enhancements of PMMA denture base material with different nano-fillers. Cogent Engineering, 8(1), 1875968. |
[28] | Gad, M. M., Abualsaud, R., Rahoma, A., Al-Thobity, A. M., Al-Abidi, K. S., & Akhtar, S. (2018). Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. International journal of nanomedicine, 13, 283. |
[29] | Ceylan, G., Emik, S., Yalcinyuva, T., Sunbuloğlu, E., Bozdag, E., & Unalan, F. (2023). The Effects of Cross-Linking Agents on the Mechanical Properties of Poly (Methyl Methacrylate) Resin. Polymers, 15(10), 2387. |
[30] | Pałka, K., & Sowa, M. (2022). Miscibility and Optimization of the Liquid Rubber Content in the Resins of Light-Cured Dental Composites. Materials, 16(1), 87. |
[31] | Tan, Y. Y., Ho, T. K., & Goo, C. L. (2022). Effect of training on time efficiency and marginal adaptation of computer‐aided design/computer‐aided manufacturing crowns among dental students. European Journal of Dental Education, 26(3), 468-474. |
[32] | Das, A., Bryant, J. S., Williams, C. B., & Bortner, M. J. (2023). Melt-Based Additive Manufacturing of Polyolefins Using Material Extrusion and Powder Bed Fusion. Polymer Reviews, 1-66. |
[33] | Spennemann, D. H., & Singh, C. L. (2023). Computed Tomography Analysis of the Manufacture of Cast Head-Bust Figurines by PATRICIA ‘Pat’Elvins (1922–2011). Heritage, 6(2), 2268-2291. |
[34] | Das, S. K., Ahmed, B., Mia, R., Bakar, A., Huq, I. U., & Xie, D. (2020). Crystallinity of FRCM/GPM with High PB through Microbial Growth. Advances in Nanoparticles, 9(4), 81-116. |
[35] | Lin, C. S. (2021). Dental Neuroimaging: The Role of the Brain in Oral Functions. John Wiley & Sons. |
[36] | Yang, T. (2023). Nothing But the Tooth: An Insider's Guide to Dental Health. Rowman & Littlefield. |
[37] | BACALI, C., BUDURU, S., POPA, D., ISPAS, A., CRACIUN, A., NEGUCIOIU, M.,... & CONSTANTINIUC, M. (2021). NATURAL DENTAL MATERIALS. A HISTORICAL PERSPECTIVE. International Journal of Medical Dentistry, 25(4). |
[38] | Ghazali, N., & Ariff, T. F. T. M. (2023). The Fundamental Properties and Biocompatibility Classification of Extraoral Prosthesis: A Review. Journal of Medical Device Technology, 2(1), 19-30. |
[39] | Yu, H. (2023). Digital Removable Partial Denture Technology: From Design Analysis to Practical Skills. Springer Nature. |
[40] | Gama, L. T., Bezerra, A. P., Schimmel, M., Garcia, R. C. M. R., de Luca Canto, G., & Gonçalves, T. M. S. V. (2022). Clinical performance of polymer frameworks in dental prostheses: A systematic review. The journal of prosthetic dentistry. |
[41] | Fan, L., Ren, Y., Emmert, S., Vučković, I., Stojanovic, S., Najman, S.,... & Xiong, X. (2023). The Use of Collagen-Based Materials in Bone Tissue Engineering. International Journal of Molecular Sciences, 24(4), 3744. |
[42] | Silva Alves Muniz, T. (2023). Materiality of Rubber: An Emerging Past from the Brazilian Amazon that Entangled the World. International Journal of Historical Archaeology, 1-27. |
[43] | O'Connor, S. M. (2019). The Damaging Myth of Patent Exhaustion. Tex. Intell. Prop. LJ, 28, 443. |
[44] | Stephens, C. (2023). A brief history of the development and use of vulcanised rubber in dentistry. British Dental Journal, 234(8), 607-610. |
[45] | Young, J. S. (2021). Bond Strength of Resilient Denture Liners to Printed Denture Base Resin (Doctoral dissertation, The University of Texas School of Dentistry at Houston). |
[46] | Rothman, R., & Ryan, A. J. (2023). The History and Future of Plastics. In Plastic Pollution In The Global Ocean (pp. 21-46). |
[47] | David, T. J., & Lewis, J. M. (2023). Forensic odontology: Historical perspectives and current applications for identification of human remains. Forensic Genetic Approaches for Identification of Human Skeletal Remains, 529-547. |
[48] | Alhotan, A. Z. R. (2022). Physiomechanical Properties of Denture Base Resin Reinforced with Nanoparticles and Fibres. The University of Manchester (United Kingdom). |
[49] | Sati, S., Bamola, V. D., Chaudhry, R., Jit, B. P., & Gupta, M. (2023). Nanoparticles and Inert Coating Materials: A Potential Enhancer of Antimicrobial Property of Polymethyl-Methacrylate (PMMA) Based Denture. J Dent Oral Epidemiol, 3(1). |
[50] | Kateman, B. (2022). Meat Me Halfway: How Changing the Way We Eat Can Improve Our Lives and Save Our Planet. Rowman & Littlefield. |
[51] |
Vargel, C. (2020). Corrosion of Aluminium (2nd ed.). Elsevier Science. Retrieved from
https://www.perlego.com/book/1814595/corrosion-of-aluminium-pdf (Original work published 2020). |
[52] | Cagna, D. R., Donovan, T. E., McKee, J. R., Eichmiller, F., Metz, J. E., Albouy, J. P.,... & Troeltzsch, M. (2020). Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. The Journal of Prosthetic Dentistry, 124(3), 274-349. |
[53] | Salgado, H., Fonseca, P., Vaz, M., Figueiral, M. H., & Mesquita, P. (2022). The use of graphene for dental polymethylmethacrylate reinforcement–A systematic review. Rev Port Estomatol Med Dent Cir Maxilofac, 63(4), 179-188. |
[54] | Krishnamoorthi, D., Suma, K., Ali, S. A., Rajkumar, G., Santhakumari, S., & Ashna, S. (2022). Effect of Recycled Denture Base Polymeric Powder Incorporation on the Surface Properties of Heat-cured PMMA Denture Base Acrylic Resin: An In Vitro Study. World, 13(5), 528. |
[55] | Dhawale, P. V., Vineeth, S. K., Gadhave, R. V., MJ, J. F., Supekar, M. V., Thakur, V. K., & Raghavan, P. (2022). Tannin as a renewable raw material for adhesive applications: a review. Materials Advances. |
[56] | Nikolova, M. P., & Apostolova, M. D. (2022). Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. Materials, 16(1), 183. |
[57] | Cadenaro, M., Josic, U., Maravić, T., Mazzitelli, C., Marchesi, G., Mancuso, E.,... & Mazzoni, A. (2023). Progress in dental adhesive materials. Journal of Dental Research, 102(3), 254-262. |
[58] | Alkaltham, N. S., Aldhafiri, R. A., Al-Thobity, A. M., Alramadan, H., Aljubran, H., Ateeq, I. S.,... & Gad, M. M. (2023). Effect of denture disinfectants on the mechanical performance of 3D-printed denture base materials. Polymers, 15(5), 1175. |
[59] | Wang, C., Akbulatov, S., Chen, Q., Tian, Y., Sun, C. L., Couty, M., & Boulatov, R. (2022). The molecular mechanism of constructive remodeling of a mechanically-loaded polymer. Nature communications, 13(1), 3154. |
[60] | Kocak, E. D., & Yildiz, Z. (2023). 18 Polymers for the Textile. Specialty Polymers: Fundamentals, Properties, Applications and Advances, 265. |
[61] | Hashemikamangar, S. S., Farahani, S., Khoshgoo, S., & Doroudgar, P. (2023). Comparative Efficacy of Four Stain Removal Methods for Bleach-Shade Composite Resins after Immersion in Staining Solutions: An In Vitro Study. International Journal of Dentistry, 2023. |
[62] | Atallah, W., AlFuraiji, N., & Hussein, O. H. (2023). Nanocomposites for Prosthetic Dental Technology: A Systemic Review. Journal of Techniques, 5(1), 129-136. |
[63] | Ziębowicz, A., Oßwald, B., Kern, F., & Schwan, W. (2023). Effect of Simulated Mastication on Structural Stability of Prosthetic Zirconia Material after Thermocycling Aging. Materials, 16(3), 1171. |
[64] | Montoya, C., Roldan, L., Yu, M., Valliani, S., Ta, C., Yang, M., & Orrego, S. (2023). Smart dental materials for antimicrobial applications. Bioactive Materials, 24, 1-19. |
[65] | Vasiliu, S., Racovita, S., Gugoasa, I. A., Lungan, M. A., Popa, M., & Desbrieres, J. (2021). The benefits of smart nanoparticles in dental applications. International Journal of Molecular Sciences, 22(5), 2585. |
[66] | Wancket, L. M., Schuh, J. C., & Drevon-Gaillot, E. (2023). Biomedical materials and devices. In Haschek and Rousseaux's Handbook of Toxicologic Pathology, Volume 2: Safety Assessment Environmental Toxicologic Pathology (pp. 427-466). Academic Press. |
[67] | Pretel, D. (2023). Hidden Connections: The Global History of Jungle Commodities. Technology and Culture, 64(1), 202-219. |
[68] | Ioannidou, A., Yannikakis, S., Caroni, C., Kourkoulis, S. K., & Papavasileiou, A. (2023). Shear bond strength between denture teeth and denture base using different bonding resins and tooth surface treatments. Materials Today: Proceedings. |
[69] | Nath, S. D., & Nilufar, S. (2020). An overview of additive manufacturing of polymers and associated composites. Polymers, 12(11), 2719. |
[70] | Verma, R., Azam, M. S., & Kumar, S. R. (2023). Comparative investigation of fabrication, roughness, mechanical and wear properties of glass ionomer and nanofillers reinforced dental composite: A review. Materialwissenschaft und Werkstofftechnik, 54(6), 700-708. |
[71] | Gronwald, B., Kozłowska, L., Kijak, K., Lietz-Kijak, D., Skomro, P., Gronwald, K., & Gronwald, H. (2023). Nanoparticles in Dentistry—Current Literature Review. Coatings, 13(1), 102. |
[72] | Laganà, A., David, M., Doutre, M., de Groot, S., van Keulen, H., Madden, O.,... & van Bommel, M. (2021). Reproducing reality. Recreating bonding defects observed in transparent poly (methyl methacrylate) museum objects and assessing defect formation. Journal of Cultural Heritage, 48, 254-268. |
[73] | De Angelis, F., Vadini, M., Buonvivere, M., Valerio, A., Di Cosola, M., Piattelli, A.,... & D’Arcangelo, C. (2023). In Vitro Mechanical Properties of a Novel Graphene-Reinforced PMMA-Based Dental Restorative Material. Polymers, 15(3), 622. |
[74] | Al-Shalawi, F. D., Mohamed Ariff, A. H., Jung, D. W., Mohd Ariffin, M. K. A., Seng Kim, C. L., Brabazon, D., & Al-Osaimi, M. O. (2023). Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers, 15(12), 2601. |
[75] | Cai, H., Xu, X., Lu, X., Zhao, M., Jia, Q., Jiang, H. B., & Kwon, J. S. (2023). Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers, 15(10), 2405. |
[76] | Pires, P. C., Mascarenhas-Melo, F., Pedrosa, K., Lopes, D., Lopes, J., Macário-Soares, A.,... & Paiva-Santos, A. C. (2023). Polymer-based biomaterials for pharmaceutical and biomedical applications: A focus on topical drug administration. European Polymer Journal, 111868. |
[77] | Selvaraj, M., PT, R., & Mylsamy, B. (2023). Extraction and Characterization of a New Natural Cellulosic Fiber from Bark of Ficus Carica Plant as Potential Reinforcement for Polymer Composites. Journal of Natural Fibers, 20(2), 2194699. |
[78] | Hasan, K. F., Al Hasan, K. N., Ahmed, T., György, S. T., Pervez, M. N., Bejó, L.,... & Alpár, T. (2023). Sustainable bamboo fiber reinforced polymeric composites for structural applications: A mini review of recent advances and future prospects. Case Studies in Chemical and Environmental Engineering, 100362. |
[79] | Png, Z. M., Wang, C. G., Yeo, J., Lee, J. J. C., Surat'man, N. E. B., Tan, Y. L.,... & Zhu, Q. (2023). Stimuli-responsive Structure-Property Switchable Polymer Materials. Molecular Systems Design & Engineering. |
[80] | Akhlaq, M., Mushtaq, U., Naz, S., & Uroos, M. (2023). Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. RSC advances, 13(9), 5723-5743. |
[81] | De Fazio, D., Boccarusso, L., Formisano, A., Viscusi, A., & Durante, M. (2023). A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. Journal of Marine Science and Engineering, 11(4), 851. |
[82] | López-Saucedo, F. (Ed.). (2023). Synthesis of Nanomaterials. Bentham Science Publishers. |
[83] | Clothier, G. K., Guimarães, T. R., Thompson, S. W., Rho, J. Y., Perrier, S., Moad, G., & Zetterlund, P. B. (2023). Multiblock copolymer synthesis via RAFT emulsion polymerization. Chemical Society Reviews, 2023, 52, 3438-3469. |
[84] | Wijekoon, M. J. O., Mahmood, K., Ariffin, F., Nafchi, A. M., & Zulkurnain, M. (2023). Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: a review on delivery systems, formulation, and industrial applications. International Journal of Biological Macromolecules, 124539. |
[85] | Lakshmi, D., Mukherjee, S., Pal, A. K., Manish, A. T., Moharana, G., & Bedia, S. (2023). Using a Three-Dimensional Superimposition Technique, Studying the Effects of Different Cooling Procedures on the Adaptability of Rapidly Heat-Cured Acrylic Denture Bases. Journal of Coastal Life Medicine, 11, 1257-1263. |
[86] | Idrissi, H. A., Annamma, L. M., Sharaf, D., Jaghsi, A. A., & Abutayyem, H. (2023). Comparative Evaluation of Flexural Strength of Four Different Types of Provisional Restoration Materials: An In Vitro Pilot Study. Children, 10(2), 380. |
[87] | Khan, A. A., Zafar, M. S., Fareed, M. A., AlMufareh, N. A., Alshehri, F., AlSunbul, H.,... & Vallittu, P. K. (2023). Fiber-reinforced composites in dentistry–An insight into adhesion aspects of the material and the restored tooth construct. Dental Materials. 39, (2), 141-151. |
[88] | Khan, A. A., Fareed, M. A., Alshehri, A. H., Aldegheishem, A., Alharthi, R., Saadaldin, S. A., & Zafar, M. S. (2022). Mechanical properties of the modified denture base materials and polymerization methods: a systematic review. International Journal of Molecular Sciences, 23(10), 5737. |
[89] | Mann, G. S., Azum, N., Khan, A., Rub, M. A., Hassan, M. I., Fatima, K., & Asiri, A. M. (2023). Green composites based on animal fiber and their applications for a sustainable future. Polymers, 15(3), 601. |
[90] | Alimi, L., Chaoui, K., Boukhezar, S., Sassane, N., Mohamed, H., & Temam, T. G. (2020). Structure and mechanical properties of PMMA/GF/Perlon composite for orthopedic prostheses. Materials Today: Proceedings, 31, S162-S167. |
[91] | Raza, S. S., Qureshi, L. A., Ali, B., Raza, A., & Khan, M. M. (2021). Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete. Structural Concrete, 22(1), 334-346. |
[92] | Alhotan, A., Yates, J., Zidan, S., Haider, J., & Silikas, N. (2021). Flexural strength and hardness of filler-reinforced PMMA targeted for denture base application. Materials, 14(10), 2659. |
[93] | Alhotan, A., Yates, J., Zidan, S., Haider, J., & Silikas, N. (2021). Assessing fracture toughness and impact strength of PMMA reinforced with nano-particles and fibre as advanced denture base materials. Materials, 14(15), 4127. |
[94] | Somani, M. V., Khandelwal, M., Punia, V., & Sharma, V. (2019). The effect of incorporating various reinforcement materials on flexural strength and impact strength of polymethylmethacrylate: A meta-analysis. The Journal of the Indian Prosthodontic Society, 19(2), 101. |
[95] | Aldegheishem, A., AlDeeb, M., Al-Ahdal, K., Helmi, M., & Alsagob, E. I. (2021). Influence of reinforcing agents on the mechanical properties of denture base resin: A systematic review. Polymers, 13(18), 3083. |
[96] | Nejatian, T., Pezeshki, S., & Syed, A. U. Y. (2019). Acrylic denture base materials. In Advanced Dental Biomaterials (pp. 79-104). Woodhead Publishing. |
[97] | Pradhan, S., Mathuriya, S., Sonkesriya, S., Maheshwari, A., Gaur, G., & Choubey, A. (2022). Evaluation of Surface Topography of Heat Cure Acrylic Denture-base Resin before and after Reinforcement with Different Fibers Using Stylus-based Profilometer. The Journal of Contemporary Dental Practice, 23(4), 415-418. |
[98] | Abbas, S. O., Mahfouz, O. A., Aboushelib, M. N., & Rady, N. A. (2021). Evaluation of impact strength of heat cure acrylic resin reinforced with nylon fiber mesh with and without prestressing (in vitro study). Alexandria Dental Journal, 46(1), 85-90. |
[99] | Sikkema, D. J. (2022). Rigid-chain polymers: Aromatic polyamides, heterocyclic rigid rod polymers, and polyesters. Advanced Industrial and Engineering Polymer Research, 5(2), 80-89. |
[100] | Dharmavarapu, P., & MBS, S. R. (2022). Aramid fibre as potential reinforcement for polymer matrix composites: a review. Emergent Materials, 5(5), 1561-1578. |
[101] | Abdulrazzaq Naji, S., Jafarzadeh Kashi, T. S., Behroozibakhsh, M., Hajizamani, H., & Habibzadeh, S. (2018). Recent advances and future perspectives for reinforcement of poly (methyl methacrylate) denture base materials: A literature review. Journal of Dental Biomaterials, 5(1), 490-502. |
[102] | He, X., Qu, Y., Peng, J., Peng, T., & Qian, Z. (2017). A novel botryoidal aramid fiber reinforcement of a PMMA resin for a restorative biomaterial. Biomaterials science, 5(4), 808-816. |
[103] | Raszewski, Z. (2020). Reinforce Acrylic Resin with Different Kinds of Fibers After Breaking. Journal of Research in Medical and Dental Science, 8(6), 125-130. |
[104] | Abdulazeez, A. M. A., Jaber, A. A., Siswomihardjo, W., Sunarintyas, S., & Warreth, A. (2023). The Effect of Combination of E-glass and Polyethylene Fiber-Reinforced Composites on Flexural Strength. Journal of Medical Sciences, 18(1), 35-41. |
[105] | Apimanchindakul, C., Na Nan, P., & Aimjirakul, N. (2022). Effect of Reinforced Self-Cured Acrylic Resin on Flexural Strength. International Journal of Dentistry, 2022. |
[106] | Mahmood, W. S., Abdullah, Z. S., & Fatalla, A. A. (2021). The Effect of Addition of Salinized Polypropylene Fibers and Hydroxy Apatite Macro Fillers on Some Mechanical Properties of Clear Heat Cured Acrylic before and after Artificial Aging. Indian Journal of Forensic Medicine & Toxicology, 15(3), 1665-1672. |
[107] | Sosiati, H., Yuniar, N. D. M., Saputra, D., & Hamdan, S. (2022). The influence of carbon fiber content on the tensile, flexural, and thermal properties of the sisal/pmma composites, composites 9 (1), pp. 32-40, 2022-03. |
[108] | Sosiati, H., Al-Giffary, F., Adil, F. A., Kamiel, B. P., Adi, R. K., & Yusuf, Y. (2022). The properties of kenaf/carbon/PMMA hybrid composites by adding chitosan nano and microparticles. Materials Today: Proceedings, 66, 2908-2913. |
[109] | Gad, M. M., Abualsaud, R., Al‐Thobity, A. M., Baba, N. Z., & Al‐Harbi, F. A. (2020). Influence of addition of different nanoparticles on the surface properties of poly (methylmethacrylate) denture base material. Journal of Prosthodontics, 29(5), 422-428. |
[110] | Jaafar, M. (2018). Review on poly-methyl methacrylate as denture base materials. Malaysian Journal of Microscopy, 14(1). |
[111] | Smitha Sharan, M. D. S., Ulla, M. S., & Divya, K. S. (2023). Comparison of Impact Strength of Non-Reinforced Polymethyl Methacrylate Resin, Polymethyl Methacrylate Resin Reinforced with Glass Nanoparticles and Polymethyl Methacrylate Resin Reinforced with Carbon Nanotubes as a Denture Base Material. Eur. Chem. Bull. 2023, 12(1), 506-515. |
[112] | Roshanali, M., Nodehi, A., & Atai, M. (2020). Synthesis and characterization of core-shell nanoparticles and their application in dental resins. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103926. |
[113] | Hata, K., Ikeda, H., Nagamatsu, Y., Masaki, C., Hosokawa, R., & Shimizu, H. (2022). Dental poly (methyl methacrylate)-based resin containing a nanoporous silica filler. Journal of Functional Biomaterials, 13(1), 32. |
[114] | Alshamrani, A., Alhotan, A., Kelly, E., & Ellakwa, A. (2023). Mechanical and Biocompatibility Properties of 3D-Printed Dental Resin Reinforced with Glass Silica and Zirconia Nanoparticles: In Vitro Study. Polymers, 15(11), 2523. |
[115] | Alhareb, A. O., Akil, H. M., & Ahmad, Z. A. (2018). Effect of nitrile butadiene rubber/Al 2 O 3/YSZ fillers for PMMA denture base on the thermal and mechanical properties. Journal of Thermal Analysis and Calorimetry, 134, 941-951. |
[116] | Raju, R., Rajan, G., Farrar, P., & Prusty, B. G. (2021). Dimensional stability of short fibre reinforced flowable dental composites. Scientific Reports, 11(1), 4697. |
[117] | Elshereksi, N. W., Muchtar, A., & Azhari, C. H. (2021). Effects of nanobarium titanate on physical and mechanical properties of poly (methyl methacrylate) denture base nanocomposites. Polymers and Polymer Composites, 29(5), 484-496. |
[118] | Michael, F. M., Krishnan, M. R., Li, W., & Alsharaeh, E. H. (2020). A review on polymer-nanofiller composites in developing coated sand proppants for hydraulic fracturing. Journal of Natural Gas Science and Engineering, 83, 103553. |
[119] | Danial, W. H., & Abdul Majid, Z. (2022). Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review. Carbon Letters, 32(6), 1411-1424. |
[120] | Barik, S. B., Patidar, P., Bagade, S. S., Kumar, A., Nayak, R. K., & Patel, P. K. (2023). Recent progress in reinforcement of nanofillers in epoxy-based nanocomposites. Materials Today: Proceedings. |
[121] | Aboshama, M., Helmy, N., & Ammar, M. (2021). Effect Of Flexural Strength Of Denture Base Resin Reinforced By Three Different Nanoparticle Materials (In Vitro Study). Al-Azhar Assiut Dental Journal, 4(1), 31-36. |
[122] | Akay, C., & Avukat, E. (2019). Effect of nanoparticle addition on polymethylmethacrylate resins. Acta Scientific Dental Sciences, 3(7), 91-97. |
[123] | Nabhan, A., Taha, M., & Ghazaly, N. M. (2023). Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA). Polymer Testing, 117, 107848. |
[124] | Azmy, E., Al-Kholy, M. R. Z., Al-Thobity, A. M., Gad, M. M., & Helal, M. A. (2022). Comparative Effect of Incorporation of ZrO 2, TiO 2, and SiO 2 Nanoparticles on the Strength and Surface Properties of PMMA Denture Base Material: An In Vitro Study. International Journal of Biomaterials, 2022. |
[125] | Pensa, E. (2018). Enhanced properties of polymethyl methacrylate coated with atomic layer deposited ceramic nanofilm (Doctoral dissertation, University of Illinois at Chicago). |
[126] | Gallab, M., Taha, M., Rashed, A., & Nabhan, A. (2022). Effect of low content of Al2O3 nanoparticles on the mechanical and tribological properties of polymethyl methacrylate as a denture base material. Egyptian Journal of Chemistry, 65(8), 1-9. |
[127] | Agrawal, A., & Satapathy, A. (2019). Thermal, mechanical, and dielectric properties of aluminium oxide and solid glass microsphere‐reinforced epoxy composite for electronic packaging application. Polymer Composites, 40(7), 2573-2581. |
[128] | Tuttle, C. M. D. (2021). Surface modification of intracanal post by using hydrogen peroxide for endodontically treated teeth: an integrative review. |
[129] | Kundie, F., Azhari, C. H., & Ahmad, Z. A. (2018). Effect of nano-and micro-alumina fillers on some properties of poly (methyl methacrylate) denture base composites. Journal of the Serbian Chemical Society, 83(1), 75-91. |
[130] | Rohim, M. N., El-Sheikh, M. N., Ali, W. Y., & Hassan, A. E. S. M. (2021). Effect of Al2O3 nanowires and ZrO2 nanoparticles addition on the mechanical and tribological properties of heat-cured PMMA acrylic denture base material. high Temp, 24, 28. |
[131] | Omar, M. H., Amin, M. H., & Younis, H. A. (2022). Comparison of using nano-ZnO and nano-Al2O3 to improve the properties of prepared polymethyl methacrylate denture base. Applied Physics A, 128(4), 313. |
[132] | Karci, M., Demir, N., & Yazman, S. (2019). Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. Journal of Prosthodontics, 28(5), 572-579. |
[133] | de Souza Leão, R., de Moraes, S. L. D., de Luna Gomes, J. M., Lemos, C. A. A., da Silva Casado, B. G., do Egito Vasconcelos, B. C., & Pellizzer, E. P. (2020). Influence of addition of zirconia on PMMA: A systematic review. Materials Science and Engineering: C, 106, 110292. |
[134] | Janardanan Kavitha, V. S. (2021). Effect of zirconium oxide and cellulose nanoparticles addition on the flexural strength, impact strength and translucency of heat polymerized acrylic resin: an in vitro study. Int J Dent Mater 2021; 3(4): 112-119. |
[135] | Asim, F. A., Al-Mosaweb, E. H., & Hussain, W. A. (2022). Studying The Physical and Biological Characteristics of Denture Base Resin PMMA Reinforced with ZrO2 and TiO2 Nanoparticles. Journal of Modern Science, 8(3), 21. |
[136] | Alfahdawi, I. H., & Abdulateef, M. A. (2023). Study the Influence of Zirconium Oxide Nanofillers on the Transverse and Impact Stresses of Heat-Cure Acrylic Resin Polymerization. |
[137] | Beketova, A., Tzanakakis, E. G. C., Vouvoudi, E., Anastasiadis, K., Rigos, A. E., Pandoleon, P.,... & Kontonasaki, E. (2023). Zirconia Nanoparticles as Reinforcing Agents for Contemporary Dental Luting Cements: Physicochemical Properties and Shear Bond Strength to Monolithic Zirconia. International Journal of Molecular Sciences, 24(3), 2067. |
[138] | Asopa, V., Suresh, S., Khandelwal, M., Sharma, V., Asopa, S. S., & Kaira, L. S. (2015). A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. The Saudi Journal for Dental Research, 6(2), 146-151. |
[139] | Gad, M. M., Fouda, S. M., Al-Harbi, F. A., Näpänkangas, R., & Raustia, A. (2017). PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. International journal of nanomedicine, 3801-3812. |
[140] | Gad, M. M., Al-Thobity, A. M., Rahoma, A., Abualsaud, R., Al-Harbi, F. A., & Akhtar, S. (2019). Reinforcement of PMMA denture base material with a mixture of ZrO 2 nanoparticles and glass fibers. International journal of dentistry, 2019. |
[141] | Gad, M. M., & Abualsaud, R. (2019). Behavior of PMMA denture base materials containing titanium dioxide nanoparticles: A literature review. International journal of biomaterials, 2019. |
[142] | Giti, R., Firouzmandi, M., Zare Khafri, N., & Ansarifard, E. (2022). Influence of different concentrations of titanium dioxide and copper oxide nanoparticles on water sorption and solubility of heat‐cured PMMA denture base resin. Clinical and Experimental Dental Research, 8(1), 287-293. |
[143] | Fahad, N. K., & Sabry, R. S. (2022). Study of some mechanical and physical properties of PMMA reinforced with (TiO2 and TiO2-GO) nanocomposite for denture bases. Journal of Polymer Research, 29(10), 439. |
[144] | Ahmed, M. A., El-Shennawy, M., Althomali, Y. M., & Omar, A. A. (2016). Effect of titanium dioxide nano particles incorporation on mechanical and physical properties on two different types of acrylic resin denture base. World Journal of Nano Science and Engineering, 6(3), 111-119. |
[145] | Hashem, M., Rez, M. F. A., Fouad, H., Elsarnagawy, T., Elsharawy, M. A., Umar, A.,... & Ansari, S. G. (2017). Influence of titanium oxide nanoparticles on the physical and thermomechanical behavior of poly methyl methacrylate (PMMA): a denture base resin. Science of Advanced Materials, 9(6), 938-944. |
[146] | Alrahlah, A., Fouad, H., Hashem, M., Niazy, A. A., & AlBadah, A. (2018). Titanium oxide (TiO2)/polymethylmethacrylate (PMMA) denture base nanocomposites: mechanical, viscoelastic and antibacterial behavior. Materials, 11(7), 1096. |
[147] | Aziz, H. K. (2018). TiO2-nanofillers effects on some properties of highly-impact resin using different processing techniques. The open dentistry journal, 12, 202. |
[148] | Naji, S. A., Kashi, T. S. J., Pourhajibagher, M., Behroozibakhsh, M., Masaeli, R., & Bahador, A. (2018). Evaluation of antimicrobial properties of conventional poly (methyl methacrylate) denture base resin materials containing hydrothermally synthesised anatase TiO2 nanotubes against cariogenic bacteria and candida albicans. Iranian journal of pharmaceutical research: IJPR, 17(Suppl2), 161. |
[149] | Cevik, P., & Yildirim‐Bicer, A. Z. (2018). The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. Journal of prosthodontics, 27(8), 763-770. |
[150] | Kamil, A. S. (2019). The effect of silicon carbide nanoparticles addition on some physical and mechanical properties of heat cured acrylic resin denture base material. Master of Science in prosthetic dentistry. College of Dentistry at the University of Baghdad. |
[151] | Salahuddin, N., El‐Kemary, M., & Ibrahim, E. (2018). Reinforcement of polymethyl methacrylate denture base resin with ZnO nanostructures. International Journal of Applied Ceramic Technology, 15(2), 448-459. |
[152] | Cierech, M., Osica, I., Kolenda, A., Wojnarowicz, J., Szmigiel, D., Łojkowski, W.,... & Mierzwińska-Nastalska, E. (2018). Mechanical and physicochemical properties of newly formed ZnO-PMMA nanocomposites for denture bases. Nanomaterials, 8(5), 305. |
[153] | Kamonkhantikul, K., Arksornnukit, M., & Takahashi, H. (2017). Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. International Journal of Nanomedicine, 2353-2360. |
[154] | Vikram, S., & Chander, N. G. (2020). Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. European oral research, 54(1), 31-35. |
[155] | Khan, M. A., Madhu, G. M., & Sailaja, R. R. N. (2017). Reinforcement of polymethyl methacrylate with silane-treated zinc oxide nanoparticles: fire retardancy, electrical and mechanical properties. Iranian Polymer Journal, 26, 765-773. |
[156] | Castro-Rojas, M. A., Vega-Cantu, Y. I., Cordell, G. A., & Rodriguez-Garcia, A. (2021). Dental applications of carbon nanotubes. Molecules, 26(15), 4423. |
[157] | Aldwimi, I. M., Alhareb, A. O., & Akil, H. M. (2021, February). Effect of HNTs and MWCNTs nanotubes on the impact strength and hardness of PMMA denture base. In AIP Conference Proceedings (Vol. 2332, No. 1). AIP Publishing. |
[158] | Díez-Pascual, A. M. (2022). PMMA-based nanocomposites for odontology applications: a state-of-the-art. International Journal of Molecular Sciences, 23(18), 10288. |
[159] | Mohd Nurazzi, N., Asyraf, M. M., Khalina, A., Abdullah, N., Sabaruddin, F. A., Kamarudin, S. H.,... & Sapuan, S. M. (2021). Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers, 13(7), 1047. |
[160] | Nurazzi, N. M., Sabaruddin, F. A., Harussani, M. M., Kamarudin, S. H., Rayung, M., Asyraf, M. R. M.,... & Khalina, A. (2021). Mechanical performance and applications of cnts reinforced polymer composites—A review. Nanomaterials, 11(9), 2186. |
[161] | Mahmood WS (2019). The effect of incorporating carbon nanotubes on impact, transverse strength, hardness, and roughness to high impact denture base material. J Bagh Coll Dent. 2015; 27: 96–99. |
[162] | Ibrahim RA (2019). The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat-cure acrylic denture base material. J Bagh Coll Dent. 2015; 27: 28–32. |
[163] | Kim, KI., Kim, DA., Patel, K. D. (2019). Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep 9, 4921 (2019). |
[164] | Sadati, V., Khakbiz, M., Chagami, M., Bagheri, R., Chashmi, F. S., Akbari, B., & Lee, K. B. (2022). Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications. Soft Matter, 18(36), 6800-6811. |
[165] | Su, X., Wang, R., Li, X., Araby, S., Kuan, H. C., Naeem, M., & Ma, J. (2022). A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science, 4(3), 185-204. |
[166] | Pal, N., & Agarwal, M. (2021). Advances in materials process and separation mechanism of the membrane towards hydrogen separation. International Journal of Hydrogen Energy, 46(53), 27062-27087. |
[167] | Kumar, T. V., Shanmugapriya, N., Arun, S., & Ramasubramanian, G. (2023). Analysis of the Multiwalled Carbon Nanotubes Reinforced Polymethyl Methacrylate Bone Cement’s Characteristics and In Vitro Bioactivity to Prolong Its Functionality in Orthopedic Application. Advances in Polymer Technology, 2023. |
[168] | Feng, P., Wang, K., Shuai, Y., Peng, S., Hu, Y., & Shuai, C. (2022). Hydroxyapatite nanoparticles in situ grow on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold. Materials Today Advances, 15, 100272. |
[169] | Mohammed, H. S., Dutta, A., Prasad, A. H., Anand, M., Kundapur, V., & Roopwani, K. (2019). Comparison of the Flexural Strength and Surface Roughness of Conventional Heat Cure and High Impact Denture Base Resins on Microadditions of Carbon Nanotubes-An In Vitro Study. Int J Biomed Sci, 15(1), 6-10. |
[170] | Ghosh, M., & Shetty, S. (2020). Effect of Addition of Graphene and Carbon Nanotubes on Flexural Strength of Polymethylmethacrylate—A Comparative In-Vitro Study. J Evol Med Dent Sci, 9, 1494-99. |
[171] | Kashan, J. S., Al-Allaq, A. A., Fouad, H., & Yahia, M. E. (2023). Effect of Multi-Walled Carbon Nanotube on the Microstructure, Physical and Mechanical Properties of ZrO2–CaO/Poly (methyl methacrylate) Biocomposite for Bone Reconstruction Application. Science of Advanced Materials, 15(3), 405-411. |
[172] | Yang, K., Zhang, F., Chen, Y., Zhang, H., Xiong, B., & Chen, H. (2022). Recent progress on carbon-based composites in multidimensional applications. Composites Part A: Applied Science and Manufacturing, 106906. |
[173] | Swaroop, N., Katiyar, P., Pandey, K. K., Tarannum, F., Umar, M., Paul, S.,... & Singh Jr, R. (2023). A Comparative Evaluation of Flexural and Impact Strength of Polymethyl Methacrylate (PMMA) Reinforced with Graphene and Multi-Walled Carbon Nanotubes: An In Vitro Study. Cureus, 15(6). |
[174] | Kushwaha, S. K. S., Kushwaha, N., Pandey, P., & Fatma, B. (2021). Halloysite nanotubes for nanomedicine: Prospects, challenges and applications. BioNanoScience, 11, 200-208. |
[175] | Saadat, S., Pandey, G., Tharmavaram, M., Braganza, V., & Rawtani, D. (2020). Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites. Advances in Colloid and Interface Science, 275, 102063. |
[176] | Abdallah, R. M. (2016). Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes. The journal of advanced prosthodontics, 8(3), 167-171. |
[177] | Lisuzzo, L., Cavallaro, G., Milioto, S., & Lazzara, G. (2020). Effects of halloysite content on the thermo-mechanical performances of composite bioplastics. Applied Clay Science, 185, 105416. |
[178] | Gaaz, T. S., Sulong, A. B., Kadhum, A. A. H., Al-Amiery, A. A., Nassir, M. H., & Jaaz, A. H. (2017). The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules, 22(5), 838. |
[179] | Hasan, W. Y., & Ali, M. M. (2018). Evaluation of thermal conductivity and some other properties of heat cured denture soft liner reinforced by halloysite nanotubes. Biomedical and Pharmacology Journal, 11(3), 1491-1500. |
[180] | Chen, S., Yang, Z., & Wang, F. (2018). Investigation on the properties of PMMA/reactive halloysite nanocomposites based on halloysite with double bonds. Polymers, 10(8), 919. |
[181] | Barot, T., Rawtani, D., Kulkarni, P., Hussain, C. M., & Akkireddy, S. (2020). Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications. Journal of the mechanical behavior of biomedical materials, 104, 103675. |
[182] | Zafar, M. S. (2020). Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers, 12(10), 2299. |
[183] | Mohammed, M. R., & Hadi, A. N. (2022). Enhancing the mechanical behaviour and antibacterial activity of bioepoxy using hybrid nanoparticles for dental applications. International Journal of Biomaterials, 2022. |
[184] | Alqutaibi, A. Y., Baik, A., Almuzaini, S. A., Farghal, A. E., Alnazzawi, A. A., Borzangy, S.,... & Zafar, M. S. (2023). Polymeric Denture Base Materials: A Review. Polymers, 15(15), 3258. |
[185] | Safwat, E. M., Khater, A. G., Abd-Elsatar, A. G., & Khater, G. A. (2021). Glass fiber-reinforced composites in dentistry. Bulletin of the National Research Centre, 45, 1-9. |
[186] | Mohameed, T. A., Salih, S. I., & Salih, W. M. (2020). Preparation and study of flexural strength and impact strength for hybrid composite materials used in structural applications. Engineering and Technology Journal, 38(8), 1117-1125. |
[187] | Alhareb, A. O., Akil, H. M., & Ahmad, Z. A. (2015). Mechanical properties of PMMA denture base reinforced by nitrile rubber particles with Al2O3/YSZ fillers. Procedia Manufacturing, 2, 301-306. |
[188] | Basima, M. A., & Aljafery, A. M. (2015). Effect of addition ZrO2-Al2O3 nanoparticles mixture on some properties and denture base adaptation of heat cured acrylic resin denture base material. Journal of Baghdad College of Dentistry, 27(3), 15-21. |
[189] | Chavhan, G. R., & Wankhade, L. N. (2020). Improvement of the mechanical properties of hybrid composites prepared by fibers, fiber-metals, and nano-filler particles–A review. Materials Today: Proceedings, 27, 72-82. |
[190] | Rongrong, C., Zhihui, H., Zhuoli, H., Junu, K. A. R. K. I., Chenxin, W., Bangshang, Z., & Xiuyin, Z. (2017). Antibacterial activity, cytotoxicity and mechanical behavior of nano- enhanced denture base resin with different kinds of inorganic antibacterial agents. Dental Materials Journal, 36(6), 693–699. |
[191] | Elmadani, A. A., Tomić, N., Radović, I., Vuksanović, M. M., Stojanović, D., Heinemann, R. J., & Radojević, V. (2019). Salt template zirconia reinforcing particles as possible reinforcement for PMMA matrix composite. Advanced Composites Letters, 28, 0963693519879696. |
[192] | Rebecca Lilda G., Rupesh P. L., Unni Pympallil, Basavaraj S. Salagundi, Pallavi N. T and Vachan Poonacha (2020); A comparative evaluation of the impact and flexural strengths of high impact acrylic resin reinforced with silaned zirconium dioxide and titanium dioxide nanoparticles and its hybrid combination - an invitro study Int. J. of Adv. Res. 8 (Feb). 781-791 (ISSN 2320-5407). |
APA Style
Aldwimi, I. M., Akil, H. M., Hamid, Z. A. A., Alhareb, A. O. (2025). Properties of the Modified Polymethyl Methacrylate as Denture Base Materials: A Comprehensive Review. International Journal of Biomedical Materials Research, 13(2), 32-59. https://doi.org/10.11648/j.ijbmr.20251302.11
ACS Style
Aldwimi, I. M.; Akil, H. M.; Hamid, Z. A. A.; Alhareb, A. O. Properties of the Modified Polymethyl Methacrylate as Denture Base Materials: A Comprehensive Review. Int. J. Biomed. Mater. Res. 2025, 13(2), 32-59. doi: 10.11648/j.ijbmr.20251302.11
@article{10.11648/j.ijbmr.20251302.11, author = {Issam Mohamed Aldwimi and Hazizan Md Akil and Zuratul Ain Abdul Hamid and Ahmed Omran Alhareb}, title = {Properties of the Modified Polymethyl Methacrylate as Denture Base Materials: A Comprehensive Review }, journal = {International Journal of Biomedical Materials Research}, volume = {13}, number = {2}, pages = {32-59}, doi = {10.11648/j.ijbmr.20251302.11}, url = {https://doi.org/10.11648/j.ijbmr.20251302.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbmr.20251302.11}, abstract = {This paper presents a review that summarises research conducted over the past few decades on enhancing acrylic denture base resin, specifically focusing on the effects of fibre, filler, and nanofiller additions on the properties of poly (methyl methacrylate) (PMMA). The review incorporates scientific papers, abstracts, and studies published between 2015 and 2023, which explore the impact of additives, fibres, fillers, and reinforcement materials on PMMA. According to the reviewed studies, the addition of fillers, fibres, nanofillers, and hybrid reinforcement materials has been shown to enhance the properties of PMMA denture base material. However, it is important to note that most of these investigations were limited to in vitro experiments and did not thoroughly explore the bioactivity and clinical implications of the modified materials. Based on the findings of the review, it is concluded that there is no single ideal denture base material. However, the properties of PMMA can be improved through certain modifications, particularly the addition of silanised nanoparticles and the use of a hybrid reinforcement system. These modifications have shown promising results in enhancing the performance of PMMA as a denture base material. }, year = {2025} }
TY - JOUR T1 - Properties of the Modified Polymethyl Methacrylate as Denture Base Materials: A Comprehensive Review AU - Issam Mohamed Aldwimi AU - Hazizan Md Akil AU - Zuratul Ain Abdul Hamid AU - Ahmed Omran Alhareb Y1 - 2025/09/13 PY - 2025 N1 - https://doi.org/10.11648/j.ijbmr.20251302.11 DO - 10.11648/j.ijbmr.20251302.11 T2 - International Journal of Biomedical Materials Research JF - International Journal of Biomedical Materials Research JO - International Journal of Biomedical Materials Research SP - 32 EP - 59 PB - Science Publishing Group SN - 2330-7579 UR - https://doi.org/10.11648/j.ijbmr.20251302.11 AB - This paper presents a review that summarises research conducted over the past few decades on enhancing acrylic denture base resin, specifically focusing on the effects of fibre, filler, and nanofiller additions on the properties of poly (methyl methacrylate) (PMMA). The review incorporates scientific papers, abstracts, and studies published between 2015 and 2023, which explore the impact of additives, fibres, fillers, and reinforcement materials on PMMA. According to the reviewed studies, the addition of fillers, fibres, nanofillers, and hybrid reinforcement materials has been shown to enhance the properties of PMMA denture base material. However, it is important to note that most of these investigations were limited to in vitro experiments and did not thoroughly explore the bioactivity and clinical implications of the modified materials. Based on the findings of the review, it is concluded that there is no single ideal denture base material. However, the properties of PMMA can be improved through certain modifications, particularly the addition of silanised nanoparticles and the use of a hybrid reinforcement system. These modifications have shown promising results in enhancing the performance of PMMA as a denture base material. VL - 13 IS - 2 ER -