 
								Synergistic Antimicrobial Activities of Limonene with Mineral Carriers in LDPE Films for Active Packaging Application
								
									
										
											
											
												Mahdi Darvish,
											
										
											
											
												Abdellah Ajji
											
										
									
								 
								
									
										Issue:
										Volume 10, Issue 2, April 2022
									
									
										Pages:
										32-40
									
								 
								
									Received:
										23 January 2022
									
									Accepted:
										6 February 2022
									
									Published:
										9 March 2022
									
								 
								
								
								
									
									
										Abstract: The integration of essential oils (EOs) into polymers to endow antimicrobial properties has received a lot of attention. EOs are remarkable in that they have broad antimicrobial activity from a natural source while also being volatile. Their volatility, on the other hand, makes high-temperature processing techniques difficult to incorporate into polymers. In this study, active films based on low-density polyethylene (LDPE) and limonene essential oil (LEO) were prepared and characterized. Before incorporation of LEO into LDPE, vacuum pulling method was used to load the LEO into five different mineral carriers. All Carrier-LEO complexes were added into LDPE using melt compounding. The goal is to analyze the potential use of these formulations to achieve prolonged antimicrobial film packaging. The halloysite nanotubes (HNTs), kaolinite (Kao), mesoporous silica nanoparticles (MSNs), zinc oxide nanoparticles (ZnONPs), and molecular sieve type 4A (Z4A) were used as mineral carriers for limonene. The functional characterizations including mechanical, thermal, optical, barrier, and antimicrobial properties as well as limonene release behavior from the LDPE composite films were investigated. As expected, free limonene molecules acted as a plasticizer in the LDPE matrix. Thermogravimetric analysis (TGA) showed 20-25% of the initial limonene content was retained against thermal degradation in compounding and film making steps and its release from the films was efficiently delayed. A decrease in optical and oxygen barrier properties, as well as elastic modulus and tensile strength, was obtained for all developed films compared with neat LDPE. Significant antibacterial activities of the films were observed against Escherichia coli DH5-Alpha (E. coli) as a model gram-negative bacterial species. Moreover, the obtained results and the short-term and long-term release studies indicated that both HNTs and the MSNs due to their strong synergistic interactions with limonene exhibited sustained release profiles of limonene from LDPE films. Thus, these new active polymer composites present promising features in controlling microbial contamination, rendering them as excellent candidates in active packaging applications.
										Abstract: The integration of essential oils (EOs) into polymers to endow antimicrobial properties has received a lot of attention. EOs are remarkable in that they have broad antimicrobial activity from a natural source while also being volatile. Their volatility, on the other hand, makes high-temperature processing techniques difficult to incorporate into po...
										Show More
									
								
								
							
							
								 
								A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins
								
								
									
										Issue:
										Volume 10, Issue 2, April 2022
									
									
										Pages:
										41-52
									
								 
								
									Received:
										3 March 2022
									
									Accepted:
										6 April 2022
									
									Published:
										20 April 2022
									
								 
								
								
								
									
									
										Abstract: Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework.
										Abstract: Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol c...
										Show More